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Introduction to Control

Control: determining the time history of joint inputs to do a 
commanded motion

Control methods are depend on hardware and application

Cartesian vs. Elbow

Motor with gear reduction vs. High torque motor without gear

Continuous path vs. P-to-P

Control methods have been advanced with the 
development of complicated hardware

The more complicated hardware, the more advanced control 
methods
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Independent Joint Control 

Each Axis -> SISO 

Coupling effect -> disturbance

Objectives: tracking and disturbance rejection
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Actuator Dynamics

DC Motor: Simple and easy to use
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Actuator Dynamics
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Torque Speed Relation
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Torque Constant

When motor is stalled
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Independent Joint Model
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Independent Joint Model
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Independent Joint Motion
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Independent Joint Motion
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B: effective damping
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PD Compensator for Set Point Tracking

Set point tracking: tracking a constant or step reference
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PD Compensator
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For a step reference input and a constant disturbance

Larger gear reduction and large P-gain can reduce the steady-state error
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PD Compensator

Closed-loop characteristic polynomial

For robotic applications, critically damped, fastest 
nonoscillatory response

determined the speed of response
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Example 6.1
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Example 6.1
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Example 6.2
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PID Compensator

( ) ( )
( ) ( ) ( ) ( )

( ) IPD

dIPD

KsKsKBJs

sD
s

s
s

s

KsKsK
s

++++=Ω

Ω
+Θ

Ω
++

=Θ

23
2

22

2

( )
J

KKB
K PD

I

+
<

Routh’s criteria



Korea University of Technology and Education

PID Compensator
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Design rule-of-thumb for PID Compensator

First, set K_I =0;

Desing PD gain to achieve the desired transient behavior

Rise time, settling time, etc)

Design K_I within the limits 
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The Effect of Saturation and Flexibility

In theory, arbitrary fast response and arbitrary small steady 
state error to a constant disturbance can be achieved by 
simply increasing the gains

In practice, however, there is a maximum speed of 
response achievable from the system

Two major factors

Saturation

Joint flexibility
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Saturation
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Flexibility

Should avoid resonant frequency

Can not increase w arbitrary
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Feedforward Control

To track time-varying trajectories
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Feedforward Control

( ) ( )sGsF /1=
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Forward plant is stable -> system is minimum phase
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Feedforward Control
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Feedforward Control

• Differentiation of a actual signal is not required
• Independent of the reference trajectory 
• With PID, steady-state error to a step disturbance is zero
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Drive Train Dynamics

Popular for use in robots due to low backlash, high torque 
transmission, compact

Joint flexibility is significant 
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Harmonic Drive

The Flexspline has two less teeth than the Circular Spline

The gear ratio is calculated by {#Flexspline Teeth} / 
{#Flexspline Teeth - #Circular Spline Teeth}. 
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Drive Train Dynamics

Flexibility is the limiting factor to the achievable performance
in many cases
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Drive Train Dynamics
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Drive Train Dynamics

In practice, the stiffness of harmonic drive is large and the 
damping is small

Neglect damping

Frequency of imaginary poles increases with increasing joint 
stiffness

Difficult to Control
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Drive Train Dynamics

Stable, but undesirable oscillation
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Drive Train Dynamics
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State Space Design
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Poles of the G(s) are 
eigenvalues of the matrix A
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State Feedback Control
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Controllability

Definition 6.1: A linear system is said to be completely controllable, or 
controllable for short, if for each initial state x(t_0) and each final state 
x(t_f) there is a control input u(t) that transfer the system from x(t_0) at 
time t_0 to x(t_f) at time t_f.

Lemma 6.1: A linear system of the form (6.50) is controllable if and only 
if

Theorem 1: Let                                                    be an arbitrary 
polynomial of degree n with real coefficients. Then there exists a state 
feedback control law of the form Eq. (6.55) such that

if and only if the system (6.50) is controllable.
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We may achieve arbitrary closed-loop poles using state feedback
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Pole Assignment

How to choose an appropriate set of closed-loop poles 
based on the desired performance, the limits on the available 
torque, etc.

Optimal Control 
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Observer

Control law must be a function of all of the states

Observer: dynamical system (constructed in software), 
attempts to estimate the full state using the system model 
and output.

Assumptions: given the system model, don’t know the 
initial condition

Observability: the eignevalue of              can be assigned 
arbitrary
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Observability

Definition 6.2 A linear system is completely observable, or observable 
for short, if every initial state x(t_0) can be exactly determined from 
measurements of the output y(t) and the input u(t) in a finite time 
interval.

Theorem 2 the pair (A,c) is observable if and only if
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Seperation Principle

Allows us to separate the design of the state feedback control 
law from the design of the state estimator

Place the observer poles to the left of the poles of feedback 
control law

Drawbacks

Large observer gains can amplify the measurement noise

Large gains of state feedback control law can result in saturation of 
the input

Uncertainties in the system parameters

nonlinearities
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