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Introduction to Control
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= Control: determining the time history of joint inputs to do a
commanded motion
= Control methods are depend on hardware and application
o Cartesian vs. Elbow
o Motor with gear reduction vs. High torque motor without gear
e Continuous path vs. P-to—P
= Control methods have been advanced with the
development of complicated hardware

e The more complicated hardware, the more advanced control
methods
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Independent Joint Control
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= Each Axis —> SISO
= Coupling effect —> disturbance
= (Objectives: tracking and disturbance rejection
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Figure 6.1: Basic structure of a feedback control system. The compensator
measures the “error” between a “reference” and a measured “output” and
produces signals to the plant that are designed to drive the error to zero
despite the presence of disturbances.
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Actuator Dynamics
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= DC Motor: Simple and easy to use

F=Iix¢
T, = K,

Figure 6.2: Principle of operation of a permanent magnet DC motor. The
magnitude of the force (or torque) on the armature is proportional to the
product of the current and magnetic flux. A commutator is required to
periodically switch the direction of the current through the armature to keep
it rotating in the same direction.
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Actuator Dynamics
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Figure 6.3: Circuit diagram for an armature controlled DC motor. The
rotor windings have an effective inductance L and resistance R. The applied
voltage V' is the control input.

L9 Ri vy,
dt
Tn = Kidl, = K,
Vi = Kpo, =K, = K, dcim
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Torque Speed Relation
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Figure 6.4: Typical torque-speed curves of a DC motor. Each line represents
the torque versus speed for a given value of the applied voltage.
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Torque Constant
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= When motor is stalled

V. =Ri =%
Km
K —R7%
LY
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Independent Joint Model
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Figure 6.5: Lumped model of a single link with actuator/gear train. J,, J,,
and J; are, respectively, the actuator, gear, and load inertias. B,, is the
coeflicient of motor friction and includes friction in the brushes and gears.

d20. _ do,
m 2 + Bm
dt dt

=7, —71,1r
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Independent Joint Model
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(Ls+R)I,(s)=V(s)-K,sO,(s)

(3,52 +B,5)9,,(s) =K, I,(s)-7,(s)/r
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Figure 6.6: Block diagram for a DC motor system. The block diagram
represents a third order system from input voltage V(s) to output position

B (8):
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Independent Joint Motion
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©,(s) K. |
V S) - S[(LS—i— R)(Jm5+ Bm)+ Kme]’ with 7, =0
®m(S) —(LS+ R)/r

. withV =0

7,(s) s[(Ls+R)J,s+B,)+K,K, ]

Effect of the load torque (disturbance) is reduced by the gear reduction

0,(s) K, /R
£<<J_m V(s) s[J,s+B,+KK, /R]
R B ©,(8) _ _ ~1/r _

r,(s) s[J s+B, +K, K, /R]

Electrical time constant << Mechanical time constant
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Independent Joint Motion
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300 () +(By + KKy /R)G, () = (K, /RN ()=, (t)/ 7
JO(t)+BA(t)=u(t)-d(t)

B: effective damping

D
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N> 5
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Figure 6.7: Block diagram of the simplified, open-loop system. The dis-
turbance D represents all of the nonlinearities and coupling from the other
links.
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PD Compensator for Set Point Tracking
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=  Set point tracking: tracking a constant or step reference

8
e 4+ +,L— 1 O
@— Kp+Kps =D 72+ B

Figure 6.8: The system with PD control. Kp and Kp are the proportional
and derivative gains and ©% is the desired joint angle to be tracked.

@(3)2%@%3)_$ D(s)

Q(s)=Js> +(B+ Ky )s+ K,
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PD Compensator
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E(s)=0%(s)-0(s)

Js*+Bs 1
= WG) (s)+@ D(s)

For a step reference input and a constant disturbance

®d(s):%d, n(s)=2

: D
=limsE(s)=—
eSS SI_rI)]S (S) KP

Larger gear reduction and large P—gain can reduce the steady—state error
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PD Compensator

A Oy O o o S S o o J0
= Closed—-loop characteristic polynomial

(B+JKD)S+ ij =38+ 2(ws + o°

K, =0, K,=2lw]-B

s% +

= [or robotic applications, critically damped, fastest
nonoscillatory response

£ =1

= (@ determined the speed of response
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Example 6.1
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Figure 6.9: Second order system of Example 6.1 with PD Compensator.

Table 6.1: Proportional and derivative gains for the system of Figure 6.9 for
various values of natural frequency w and damping ratio ¢ = 1.

Natural Proportional | Derivative
Frequency (w) | Gain Kp Gain Kp
4 16 7

8 64 15

12 144 23
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Example 6.1
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Figure 6.10: Critically damped second order step responses. The rise time
decreases for increasing values of w.
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Example 6.2
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Figure 6.11: Second order system response with PD control and disturbance
added. The steady state error decreases for increasing w.
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PID Compensator
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d
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Figure 6.12: Closed-loop system with PID control. The integrator added to

0e +

the compensator increases the system order from two to three and increases
the system type number from 1 to 2.

Routh’s criteria

ofs)- o' ;§§;+ o 6+ 5,520

Q, =3 +(B+K,)s? +Kps+K, K,

L (B+Ky K,
J
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PID Compensator
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Figure 6.13: Response with integral control action showing that the steady
state error to a constant disturbance has been removed.
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Design rule-of-thumb for PID Compensator
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= First, set K_| =0;

= Desing PD gain to achieve the desired transient behavior
o Rise time, settling time, etc)

= Design K_I within the limits
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The Effect of Saturation and Flexibility
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= |n theory, arbitrary fast response and arbitrary small steady
state error to a constant disturbance can be achieved by
simply increasing the gains

= |n practice, however, there is a maximum speed of
response achievable from the system

= Two major factors
e Saturation
o Joint flexibility
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Saturation
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d
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Figure 6.14: Second order system with input saturation limiting the mag-
nitude of the input signal. Increasing the magnitude of the compensator
output signal beyond the saturation limit will not increase the input to the
plant.
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sl [More 6.15: Response of the second order system with saturation, distur- ®
Korea University of Technol bance, and PID control. The effect of the saturation is seen in the much
slower rise time.




Flexibility

= Should avoid resonant frequency
= (Can not increase w arbitrary
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Feedforward Control
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= To track time-varying trajectories

N H(s) N G(s)

Figure 6.16: Feedforward control scheme. F'(s) is the feedforward transfer
function which has the reference signal ©¢ as input. The output of the
feedforward block is superimposed on the output of the compensator H(s).

G(s)zﬁ H(s)= c(s) F(s)= a(s) T(s)= Y(s) q(s)c(sh(s)+a(s)d(s))

d(s)" T b(s) ~R(s) " b(s)p(s)d(s)+alsk(s)

Feedforward system and closed—-loop system should be stable
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Feedforward Control
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F(s)=1/G(s)

_gs
R(s)=Y(s)

Forward plant is stable —> system is minimum phase
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Feedforward Control
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) A H(s) D A Cs) |

Figure 6.17: Feedforward control with disturbance D(s).

E(s)= q(s)d(s)

= o5)6)+ glsis) O
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Feedforward Control
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Js? + Bs D(s)
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i Kp + Kps 70 Js2 1 Bs

Figure 6.18: Feedforward compensator for the second order system of Sec-
tion 6.3.

» Differentiation of a actual signal is not required
* Independent of the reference trajectory
 With PID, steady-state error to a step disturbance is zero
V(t)=J36° +BE® + Ky (69 - 0)+ K, (6° - 0)
= f(t)+ Kye(t)+ Koe(t)
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Drive Train Dynamics
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= Popular for use in robots due to low backlash, high torque
transmission, compact

= Joint flexibility is significant

Figure 6.19: The harmonic drive. The rotation of the elliptical wave gen-
erator meshes the teeth of the flexspline and circular spline resulting in
low backlash and high torque transmission. (Courtesy of of HD Systems,
www.hdsi.net.)
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Harmonic Drive
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= The Flexspline has two less teeth than the Circular Spline

» The gear ratio is calculated by {#Flexspline Teeth} /
{#Flexspline Teeth — #Circular Spline Teeth}.
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Drive Train Dynamics
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= Flexibility is the limiting factor to the achievable performance
in many cases

Figure 6.20: Idealized model to represent joint flexibility. The stiffness
constant k represents the effective torsional stiffness of the harmonic drive.

3,6, +B,6, +k(6,-6,)=0
‘]mém + Bmém —k(9| _em):u
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Drive Train Dynamics
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P, (S)®| (S): k®m(5) P (S): ‘]|52 +B;s+k
pm(s)®m(s):k |(S)+U(S) pm(S)=JmSZ+BmS+k
k
U pnzl(s) QTH > 'p[]E:H) - 91

Figure 6.21: Block diagram for the system (6.41) and (6.42).

0,(s) k
U(s)  pi(s)pn(s)-k’
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Drive Train Dynamics
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= |n practice, the stiffness of harmonic drive is large and the
damping is small

= Neglect damping
J,J s +k(J,+J,)s?

= fFrequency of imaginary poles increases with increasing joint
stiffness

= Difficult to Control
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Drive Train Dynamics
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Figure 6.23: Root locus for the system of Figure 6.22,

Figure 6.22: PD control with motor angle feedback.
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Figure 6.26: Step response — PD control with motor angle feedback. The
mator shaft angle, collocated with the motor torque, shows the desired re-
sponse without overshoot. The motion of the motor shaft excites an oseil-
lation in the load angle, which is effectively outside the feedback loop.

Stable, but undesirable oscillation
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Drive Train Dynamics
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Figure 6.25: Root locus for the system of Figure 6.24.
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F'l;.';lll'u 6.27: Sh-p response PD control with load elll;.’:lt‘ feedback. The
load angle is shown for two different sets of gain parameters. As we know
that the system is unstable for large gain, we must effectively "detune” the

system for stability, which results in a slower than desired response,
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State Space Design
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X1:6)| X2:6}| ®
S _
. G(s)= I )=cT(sI—A)1b
X, =0 X,=6_ us)
X = AX+bu Poles of the G(s) are
"0 1 0 0 "0 ] eigenvalues of the matrix A
k | k
R 0
_ | | | _
A=l 0 o 1| P=lo
koo _k B L
L J NN I [ I |
y=C'X
¢"=[1 0 0 0]
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State Feedback Control
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4
u(t)=-k"x+r=>"kx+r
i=1

Compare with previous PD/PID ?

X =(A—bk™ Jx+br

More free parameters
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Controllability
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= Definition 6.1: A linear system is said to be completely controllable, or
controllable for short, if for each initial state x(t_0) and each final state
x(t_f) there is a control input u(t) that transfer the system from x(t_0) at
timet O to x(t_f) at time t_f.
= Lemma 6.1: A linear system of the form (6.50) is controllable if and only
if
deth Ab A’ - A™b|%0
= Theorem 1:Let a(s)=s"+a,s"" +-+a,S+a, be an arbitrary

polynomial of degree n with real coefficients. Then there exists a state
feedback control law of the form Eqg. (6.55) such that

det(sl — A+bk™)=a(s)

if and only if the system (6.50) is controllable.

We may achieve arbitrary closed-loop poles using state feedback
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Pole Assignment
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= How to choose an appropriate set of closed—loop poles
based on the desired performance, the limits on the available
torque, etc.

= Optimal Control
J = [ (t)Rx(t)+ Ru? ()t
u=-k'x

K=pTp
R

ATP + PA—%PbTbP+Q =0
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Observer
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= Control law must be a function of all of the states

» Qbserver: dynamical system (constructed in software),
attempts to estimate the full state using the system model
and output.

%= Ax+bu+(y—c'%)

=  Assumptions: given the system model, don’t know the
initial condition

et)=x—X
¢=(A—rc" e

= QObservability: the eignevalue of (A—ECT) can be assigned
arbitrary
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Observability
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= Definition 6.2 A linear system is completely observable, or observable
for short, if every initial state x(t_0) can be exactly determined from
measurements of the output y(t) and the input u(t) in a finite time
interval.

= Theorem 2 the pair (A,c) is observable if and only if

detle Ac .- AT c|£0
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Seperation Principle
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X = AX +bu {X} A—bk"  bkT {x}

u= _kT)'Z e 0 A—fCT €
= Allows us to separate the design of the state feedback control
law from the design of the state estimator
= Place the observer poles to the left of the poles of feedback
control law
= Drawbacks
e Large observer gains can amplify the measurement noise

o Large gains of state feedback control law can result in saturation of
the input

¢ Uncertainties in the system parameters
e nonlinearities

|
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