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Basic Definitions

The most common postulates used to formulate 
various algebraic structures

1. Closure : A set S is closed with respect to a binary operator if, 
for every pair of elements of S, the binary operator specifies a
rule for obtaining a unique elements of S.

2. Associative law : (x*y)*z=x*(y*z)  for all x,y,z∈S
3. Commutative law : x*y=y*x for all x,y∈S
4. Identity elements: for all x∈S, e*x=x*e=x 

ex) set of integers I={…, -3, -2, -1, 0, 1, 2, 3, …}, 
x+0=0+x=x 

5. Inverse : A set S having the identity element e
for all x∈S , exists y∈S, such that  x*y=e 

6. Distributive law : x*(y o z)=(x*y) o (x*z) 
* is distributive over o
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Axiomatic Definition of Boolean Algebra

1. (a) Closure with respect to the operator +
(b) Closure with respect to the operator *

2. (a) An identity element with respect to +, designed 
by 0: x+0=0+x=x
(b) An identity element with respect to *, designed 
by 1: x*1=1*x=x

3. (a) Commutative with respect to +: x+y=y+x
(b) Commutative with respect to *: x*y=y*x

4. (a) * is distributive over +: x*(y+z)=(x*y)+(x*z)
(b) + is distributive over *: x+(y*z)=(x+y)*(x+z)

5. For every element x∈B, there exists an element 
x’∈B (called the complement of x) such that (a) 
x+x’=1 and (b)x*x’=0.

6. There exists at least two elements x,y∈B such that 
x≠y.
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• Show 6 postulates

• Show distributive law  )()()( zxyxzyx ⋅+⋅=+⋅

Two-valued Boolean Algebra
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Basic Theorems and Properties of Boolean Algebra

• Duality
• Postulates need no proof
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Prove Theorems
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DeMorgan’s Theorem
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Operator Procedure
1. Parentheses

2. NOT

3. AND

4. OR
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zyxF '1 +=
- The function F1 is equal to 1 if x is equal to 1 or if both y’
and z are equal to 1.

- Otherwise, F1 is equal to 0.

Boolean Functions
Boolean algebra is an algebra that deals with binary 
variables and logic operations.
Boolean functions consists of binary variables, the 
constants 0 and 1, and the logic operation symbols.
A Boolean function can be represented in a truth table.
A Boolean function expresses the logical relationship 
between binary variables.
A Boolean functions can be transformed from an 
algebraic expression into a circuit diagram composed 
of logic gates.
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F1 = x + y'z

F2 = x'y'z + x'yz +xy‘

= x'z(y'+y) + xy' 

= x'z + xy' 

Variety of algebraic form, 

but one truth table

Boolean Functions
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Boolean Functions – Algebraic Manipulation

Ex 2-1) Simplify the following Boolean 
functions to a minimum number of literals.

1. x(x'+y) = xx' + xy = 0 + xy = xy. 

2. x +x'y = (x+x')(x+y) = 1(x+y) = x + y. 

3. (x+y)(x+y') = x + xy + xy' + yy' = x(1+y+y') = x. 

4. xy + x'z + yz = xy + x'z + yz(x+x') 

= xy + x'z + xyz + x'yz

= xy(1+z) + x'z(1+y) 

= xy + x'z

5. (x+y)(x'+z)(y+z) = (x+y)(x'+z) : by duality from 
function 4. 
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Boolean Functions – Complement of a Function

(A + B + C)'= (A+x)' let B+C=x

= A'x' by theorem 5(a)(DeMorgan) 

= A'(B+C)' substitute B+C=x

= A'(B'C') by theorem 5(a) (DeMorgan)

= A'B'C' by theorem 4(b)(associative)

=>  (A+B+C+D+…+F)' = A'B'C'D'…F' 

(ABCD…F)' = A' +B'+ C' + D' +..+ F‘

Generalized form of Demorgan’s theorem

Interchanging AND and OR, and complementing 
each literal
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Examples – Complement of a Function

Ex 2-2) Find the complement of the functions 
F1=x'yz'+x'y'z, F2=x(y'z'+yz).
F1' = (x'yz'+x'y'z)' = (x'yz')'(x'y'z)' = (x+y'+z)(x+y+z') 
F2' = [x(y'z'+yz)]' = x'+(y'z'+yz)' = x'+(y'z')'(yz)' = 

x'+(y+z)(y'+z')

Ex 2-3) Find the complement of the functions F1 And 
F2  Ex 2-2 by taking their duals and complementing 
each literal. 

1. F1 = x'yz' + x'y'z. 
The dual of F1 is (x'+y+z')(x'+y'+z) 
Complement each literal : (x+y'+z)(x+y+z')=F1'

2. F2 = x(y'z'+yz). 
The dual of F2  is x+(y'+z')(y+z)이다. 
Complement each literal : x'+(y+z)(y'+z')=F2'
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Examples

1. Simplify the following Boolean 
expressions to a minimum number of 
literals 
(a) xy + xy’ (b) (x+y)(x+y’)
(c) xyz + x’y + xyz’ (d) (A+B)’(A’+B’)’

2. Reduce the following Boolean 
expressions to the indicated number of 
literals:
(a) A’C’ +ABC + AC’ to 3 literals

(b) (x’y’+z)’+z+xy+wz to 3 literals
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A binary variable x, may appear (x) or (x’)

Consider two binary variables x and y

Combined with an AND operation

Four possible combinations: x’y’, x’y, xy’, and xy

-> is called a minterm, or a standard product

n variables can be combined to form         minterms

In a similar fashion, n variables forming an OR term 
provide         possible combinations, called maxterms, 
or standard sums.

A Boolean function can be expressed algebraically 
from a given truth table by forming a minterm and 
then taking the OR of all those terms.

n2

n2

Canonical Forms
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Minterms and Maxterms

Canonical Forms

Complement
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Canonical Forms

• Any Boolean function can be expressed as a sum of 
minterms (with “sum” meaning the ORing of terms).

f1 = x'y'z+xy'z'+xyz = m1+m4+m7 

f2 = x'yz+xy'z+xyz'+xyz = m3+m5+m6+m7
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f’1 = x’y’z’+x’yz’+x’yz+xy’z+xyz’

f1 = (x+y+z)(x+y'+z)(x+y’+z’)(x'+y+z')(x'+y'+z)    =  M0M2M3M5M6

f2 = (x+y+z)(x+y+z’)(x+y'+z)(x'+y+z) =  M0M1M2M4

• Boolean functions expressed as a sum of minterms
or product of maxterms are said to be in canonical 
form.

Canonical Forms

• Any Boolean function can be expressed as a product 
of maxterms (with “product” meaning the ANDing of 
terms).
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Ex 2-4) Express the Boolean function F=A+B'C in a sum of 
minterms.

A = A(B+B') = AB +AB' 

= AB(C+C') + AB'(C+C')

= ABC + ABC' + AB'C +AB'C'

B'C = B'C(A+A') = AB'C + A'B'C 

F = A + B'C

= A' B'C + AB'C' + AB'C + ABC' + ABC

= m1 + m4 + m5 + m6 + m7

= ∑(1, 4, 5, 6, 7)

Canonical Forms
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Canonical Forms

Product of maxterms
Ex 2-5) Express the Boolean function F = xy + x'z in a product of 
maxterm form.

F = xy + x'z = (xy+x')(xy+z)

= (x+x')(y+x')(x+z)(y+z)

= (x'+y)(x+z)(y+z)

x' + y= x' + y + zz'= (x'+y+z)(x'+y+z')

x + z= x + z + yy'= (x+y+z)(x+y'+z)

y + z= y + z + xx'= (x+y+z)(x'+y+z)

F = (x+y+z)(x+y'+z)(x'+y+z)(x'+y+z')

= M0M2M4M5

F(x, y, z) = ∏(0, 2, 4, 5)
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Conversion between Canonical Forms

F(A, B, C) = ∑(1, 4, 5, 6, 7)

F' (A, B, C) = ∑(0, 2, 3) = m0 + m2 + m3

F = (m0+m2+m3)' = m0'm2'm3' = M0M2M3 = ∏(0, 2, 3) , mj' = Mj

Ex) F = xy + x'z

F(x, y, z) = ∑(1, 3, 6, 7)

F(x, y, z) = ∏(0, 2, 4, 5)

Canonical Forms
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Standard Forms: don’t need to contain all the variables

- Sum of product : F1 = y' +xy + x'yz'

- Product of sum : F2 = x(y'+z)(x'+y+z'+w)

- Ex) F3 = AB + C(D+E) = AB +CD + CE 

Standard Forms

Preferred why ?

delay
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1. Obtain the truth table of the following functions and express each 
function in sum of minterms and product of maxterms:

(a) (xy + z)(y + xz)                (b) (A’ + B)(B’ + C)

(c ) y’z + wxy’ + wxz’ + w’x’z

2. Convert the following to the other canonical form:

∑= )7,3,1(),,()( zyxFa

∏= )12,6,4,3,2,1,0(),,,()( DCBAFb

Examples
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Other Logic Operations

Number of possible Boolean function for n binary variables is 
n22
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Other Logic Operations
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Digital Logic Gates

From 16 functions only eight are used as standard gates 
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Digital Logic Gate

NAND and NOR are more 
popular than AND and OR
since those can be easily 
constructed with TR
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- AND and OR are commutative and associative -> gate can be 
extended to multiple inputs

- But, NAND and NOR operators are not associative.

(x↓y)↓z≠x↓(y↓z) 

(x↓y)↓z= [(x+y)'+z]'

= (x+y)z'= xz' + yz'

x↓(y↓z)= [x+(y+z)'] '

= x'(y+z)= x'y + x'z

- To overcome, redefine

x↓y↓z= (x+y+z)'

x↑y↑z= (xyz)' 

F = [(ABC)'(DE)']' = ABC + DE 

Digital Logic Gate-Extension to Multiple Inputs
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- exclusive-OR 

Positive and Negative Logic

Digital Logic Gate

Commutative,
associative
Odd function


