MEC520 디지털 공학

Boolean Algebra and Logic Gates

Jee-Hwan Ryu

School of Mechanical Engineering Korea University of Technology and Education

Basic Definitions

- The most common postulates used to formulate various algebraic structures
- 1. Closure : A set S is closed with respect to a binary operator if, for every pair of elements of S, the binary operator specifies a rule for obtaining a unique elements of S.
- 2. Associative law : (x*y)*z=x*(y*z) for all x,y,z \in S
- 3. Commutative law : x*y=y*x for all x,y∈S
- 4. Identity elements: for all x∈S, e*x=x*e=x ex) set of integers I={..., -3, -2, -1, 0, 1, 2, 3, ...}, x+0=0+x=x
- Inverse : A set S having the identity element e for all x∈S , exists y∈S, such that x*y=e
- 6. Distributive law : $x*(y \circ z)=(x*y) \circ (x*z)$
 - * is distributive over o

Axiomatic Definition of Boolean Algebra

- (a) Closure with respect to the operator +

 (b) Closure with respect to the operator *
 (a) An identity element with respect to +, designed by 0: x+0=0+x=x
 (b) An identity element with respect to *, designed by 1: x*1=1*x=x
 (a) Commutative with respect to +: x+y=y+x
 (b) Commutative with respect to *: x*y=y*x
 (c) Commutative over +: x*(y+z)=(x*y)+(x*z)
 - (b) + is distributive over *: x+(y*z)=(x+y)*(x+z)
- 5. For every element $x \in B$, there exists an element $x' \in B$ (called the complement of x) such that (a) x+x'=1 and (b)x*x'=0.
- 6. There exists at least two elements $x,y \in B$ such that $x \neq y$.

Korea University of Technology and Education

Two-valued Boolean Algebra

Х	У	Х·У	Х	У	x + y	Х	X'
0	0	0	0	0	0	0	1
0	1	0	0	1	1		
1	0	0	1	0	1	1	0
1	1	0	1	1	1		

- Show 6 postulates
- Show *distributive* law

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$

Basic Theorems and Properties of Boolean Algebra

Table 2-1

Postulate 2	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Postulate 5	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Theorem 1	(a)	x + x = x	(b)	$x \cdot x = x$
Theorem 2	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$
Theorem 3, involution		(x')' = x		
Postulate 3, commutative	(a)	x + y = y + x	(b)	xy = yx
Theorem 4, associative	(a) <i>x</i>	+(y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Postulate 4, distributive	(a)	x(y+z) = xy + xz	(b)	x + yz = (x + y)(x + z)
Theorem 5, DeMorgan	(a)	(x + y)' = x'y'	(b)	(xy)' = x' + y'
Theorem 6, absorption	(a)	x + xy = x	(b) <i>x</i>	x(x+y) = x

Postulates and Theorems of Boolean Algebra

• Duality

T1

· Postulates need no proof

Korea University of Technology and Education

Prove Theorems

Theorem 1(a)

$$x + x = x$$

$$x + x = (x + x) \cdot 1$$

$$= (x + x) \cdot (x + x')$$

$$= x + xx'$$

$$= x + 0$$

$$= x$$

Theorem 1(b) $x \cdot x = x$ $x \cdot x = x \cdot x + 0$ $= x \cdot x + x \cdot x'$ $= x \cdot (x + x')$ $= x \cdot 1$

1 0 1

🗖 ការ

$$= x$$

DeMorgan's Theorem

1 0 1

d 0 0

$$(x+y)' = x'y'$$
$$(xy)' = x' + y'$$

Korea University of Technology and Education

Operator Procedure

- 1. Parentheses
- 2. NOT
- 3. AND
- 4. OR

Examples

(x+y)'x'y'

Boolean Functions

- Boolean algebra is an algebra that deals with binary variables and logic operations.
- Boolean functions consists of binary variables, the constants 0 and 1, and the logic operation symbols.
- A Boolean function can be represented in a truth table.
- A Boolean function expresses the logical relationship between binary variables.
- A Boolean functions can be transformed from an algebraic expression into a circuit diagram composed of logic gates.

$$F_1 = x + y'z$$

- The function F1 is equal to 1 if x is equal to 1 or if both y' and z are equal to 1.

- Otherwise, F1 is equal to 0.

Korea University of Technology and Education

Boolean Functions

Truth Tabl	es for F	$_1$ and F_2	Trund in	
x	y	z	F ₁	F ₂
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
1	0	0	1	1
1	0	1	1	1
1	1	0	1	0
1	1	1	1	0
F,	= x	$+ v'_{2}$	Z	
- 1		5	_	
F_{2}	= x	'y'z +	x'yz	+ xy'
2		-		-
	= X'	Z(y' +)	y) + :	xy
	= x'	z + x	v'	
		r		:_ £
Va	riety	or a	igebra	uc torm,
hı	it on	e trut	h tabl	e

Boolean Functions - Algebraic Manipulation

 Ex 2-1) Simplify the following Boolean functions to a minimum number of literals.

1. x(x'+y) = xx' + xy = 0 + xy = xy. 2. x + x'y = (x+x')(x+y) = 1(x+y) = x + y. 3. (x+y)(x+y') = x + xy + xy' + yy' = x(1+y+y') = x. 4. xy + x'z + yz = xy + x'z + yz(x+x') = xy + x'z + xyz + x'yz = xy(1+z) + x'z(1+y) = xy + x'z5. (x+y)(x'+z)(y+z) = (x+y)(x'+z) : by duality from function 4.

Korea University of Technology and Education

Boolean Functions - Complement of a Function

Examples – Complement of a Function

- Ex 2-3) Find the complement of the functions F₁ And F₂ Ex 2-2 by taking their duals and complementing each literal.
 - 1. $F_1 = x'yz' + x'y'z$. The dual of F_1 is (x'+y+z')(x'+y'+z)Complement each literal : $(x+y'+z)(x+y+z')=F_1'$ 2. $F_2 = x(y'z'+yz)$. The dual of F_1 is $x+(y'+z')(y+z) \in F_1$

The dual of F_2 is x+(y'+z')(y+z)0|C|. Complement each literal : $x'+(y+z)(y'+z')=F_2'$

Korea University of Technology and Education

Examples

1. Simplify the following Boolean expressions to a minimum number of literals

(a) xy + xy' (b) (x+y)(x+y')

- (c) xyz + x'y + xyz' (d) (A+B)'(A'+B')'
- 2. Reduce the following Boolean expressions to the indicated number of literals:
 - (a) A'C' +ABC + AC' to 3 literals
 - (b) (x'y'+z)'+z+xy+wz to 3 literals

- A binary variable x, may appear (x) or (x')
- Consider two binary variables x and y
- Combined with an AND operation
- Four possible combinations: x'y', x'y, xy', and xy

-> is called a minterm, or a standard product

- n variables can be combined to form 2^n minterms
- In a similar fashion, n variables forming an OR term provide 2ⁿ possible combinations, called maxterms, or standard sums.
- A Boolean function can be expressed algebraically from a given truth table by forming a minterm and then taking the OR of all those terms.

Korea University of Technology and Education

Canonical Forms

• Minterms and Maxterms	
-------------------------	--

	and the		Mi	interms	Maxt	erms
x	у	z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_{4}
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M ₆
1	1	1	xyz	m_7	x' + y' + z'	M_7

Complement

• Any Boolean function can be expressed as a sum of minterms (with "sum" meaning the ORing of terms).

x	у	Z	Function f ₁	Function f ₂
0	0	0	0 0	0
0	0	1	survey of the second	0
0	1	0	0	0
0	1	1	0	inter Pris proce
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	a contraction of the	press pre Book

 $f_1 = x'y'z + xy'z' + xyz = m1 + m4 + m7$

 $f_2 = x'yz + xy'z + xyz' + xyz = m3 + m5 + m6 + m7$

Korea University of Technology and Education

Canonical Forms

 Any Boolean function can be expressed as a product of maxterms (with "product" meaning the ANDing of terms).

$$f'_{1} = x'y'z' + x'yz' + x'yz + xy'z + xyz'$$

$$f_{1} = (x+y+z)(x+y'+z)(x+y'+z')(x'+y+z')(x'+y'+z) = M_{0}M_{2}M_{3}M_{5}M_{6}$$

$$f_{2} = (x+y+z)(x+y+z')(x+y'+z)(x'+y+z) = M_{0}M_{1}M_{2}M_{4}$$

• Boolean functions expressed as a sum of minterms or product of maxterms are said to be in canonical form.

Ex 2-4) Express the Boolean function F=A+B'C in a sum of minterms.

$$\begin{aligned} A &= A(B+B') = AB + AB' \\ &= AB(C+C') + AB'(C+C') \\ &= ABC + ABC' + AB'C + AB'C' \\ B'C &= B'C(A+A') = AB'C + A'B'C \\ F &= A + B'C \\ &= A'B'C + AB'C' + AB'C + ABC' + ABC \\ &= m_1 + m_4 + m_5 + m_6 + m_7 \\ &= \sum(1, 4, 5, 6, 7) \end{aligned}$$

A	B	C	F
0		in constitution	1.1.1.
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1 -	1	1	1

Korea University of Technology and Education

Canonical Forms

- Product of maxterms
- Ex 2-5) Express the Boolean function F = xy + x'z in a product of maxterm form.

$$F = xy + x'z = (xy+x')(xy+z)$$

$$= (x+x')(y+x')(x+z)(y+z)$$

$$= (x'+y)(x+z)(y+z)$$

$$x' + y = x' + y + zz' = (x'+y+z)(x'+y+z')$$

$$x + z = x + z + yy' = (x+y+z)(x+y'+z)$$

$$y + z = y + z + xx' = (x+y+z)(x'+y+z)$$

$$F = (x+y+z)(x+y'+z)(x'+y+z)(x'+y+z')$$

$$= M_0 M_2 M_4 M_5$$

$$F(x, y, z) = \prod (0, 2, 4, 5)$$

- Conversion between Canonical Forms $F(A, B, C) = \sum (1, 4, 5, 6, 7)$ $F'(A, B, C) = \sum (0, 2, 3) = m_0 + m_2 + m_3$ $F = (m_0 + m_2 + m_3)' = m_0'm_2'm_3' = M_0M_2M_3 = \prod (0, 2, 3), m_j' = M_j$

$$Ex) F = xy + x'z$$

$$F(x, y, z) = \sum(1, 3, 6, 7)$$

$$F(x, y, z) = \prod(0, 2, 4, 5)$$

K	У	Z	F
)	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	- 1	1	1

n – n 1

Korea University of Technology and Education

Standard Forms

- Standard Forms: don't need to contain all the variables
- Sum of product : $F_1 = y' + xy + x'yz'$
- Product of sum : $F_2 = x(y'+z)(x'+y+z'+w)$

Examples

1. Obtain the truth table of the following functions and express each function in sum of minterms and product of maxterms:

n – n n

] 🗖 Ø I

(a) (xy + z)(y + xz) (b) (A' + B)(B' + C)(c) y'z + wxy' + wxz' + w'x'z

2. Convert the following to the other canonical form:

(a)
$$F(x, y, z) = \sum (1,3,7)$$

(b)
$$F(A, B, C, D) = \prod (0, 1, 2, 3, 4, 6, 12)$$

Korea University of Technology and Education

Other Logic Operations

x	y	Fo	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F9	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	. 1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	-1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Truth Tables for the 16 Functions of Two Binary Variables

Number of possible Boolean function for *n* binary variables is 2^{2^n}

Other Logic Operations

Boolean functions	Operator symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	<i>x</i> ′
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	у
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	<i>x</i> or <i>y</i> , but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y, then x
$F_{12} = x'$	<i>x</i> ′	Complement	Not <i>x</i>
$F_{13} = x' + y$	$x \supset y$	Implication	If x, then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1

d 🗖 🖉 🗖

Boolean Expressions for the 16 Functions of Two Variables

Korea University of Technology and Education

Digital Logic Gates

Name	Graphic symbol	Algebraic function	Truth table
AND	x y	F = xy	$\begin{array}{c ccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$
OR		F = x + y	$\begin{array}{c ccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$
Inverter	x	F = x'	$\begin{array}{c c} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array}$
Buffer	x	F = x	x F 0 0 1 1

From 16 functions only eight are used as standard gates

Digital Logic Gate

NAND and NOR are more popular than AND and OR since those can be easily constructed with TR

n – n 1

Fig. 2-5 Digital logic gates

Digital Logic Gate-Extension to Multiple Inputs

- AND and OR are commutative and associative -> gate can be extended to multiple inputs
- But, NAND and NOR operators are not associative.

 $(x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z)$ $(x \downarrow y) \downarrow z = [(x+y)'+z]'$ $(x \downarrow y) \downarrow z = (x + y)z'$ = (x+y)z'= xz' + yz' $x \downarrow (y \downarrow z) = [x+(y+z)']'$ $x \downarrow (y \downarrow z) = x' (y + z)$ = x'(y+z) = x'y + x'zFig. 2-6 Demor iativity of the NOR operator; $(x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z)$ - To overcome, redefine $-(x + y + z)^{t}$ $-(xyz)^{\prime}$ (a) 3-input NOR gate (b) 3-input NAND gate $x \downarrow y \downarrow z = (x+y+z)'$ $x \uparrow y \uparrow z = (xyz)'$ $[(ABC)' \cdot (DE')]' = ABC + DE$ F = [(ABC)'(DE)']' = ABC + DE(c) Cascaded NAND gates Fig. 2-7 Multiple-input and cascated NOR and NAND gates

Digital Logic Gate

