Gate-Level Minimization

Jee-Hwan Ryu

School of Mechanical Engineering
Korea University of Technology and Education

Gate-Level Minimization-The Map Method

- Truth table is unique
- Many different algebraic expression
- Boolean expressions may be simplified by algebraic means
- But, awkward due to the lack of specific rules
- Karnaugh Map or K-map method
- Pictorial form of truth table
- A simple and straight forward procedure

Why Need to be Simple?

- Produces a circuit diagram with a minimum number of gates and the minimum number of inputs to the gate
- Simplest expression is not unique

Two-Variable Map

Fig. 3-1 Two-variable Map

(a) $x y$

(b) $x+y$

Fig. 3-2 Representation of Functions in the Map

$$
m 1+m 2+m 3=x^{\prime} y+x y^{\prime}+x y=x+y
$$

Three-Variable Map

m_{0}	m_{1}	m_{3}	m_{2}
m_{4}	m_{5}	m_{7}	m_{6}

(a)

(b)

Fig. 3-3 Three-variable Map
Not in a binary sequence, but in a sequence similar to Gray code

$$
\begin{aligned}
& m_{5}+m_{7}=x y^{\prime} z+x y z=x z\left(y+y^{\prime}\right)=x z \\
& m_{0}+m_{2}=x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}=x^{\prime} z^{\prime}\left(y^{\prime}+y\right)=x^{\prime} z^{\prime}
\end{aligned}
$$

Examples

Ex 3-1) Simplify the Boolean function, $F(x, y, z)=\Sigma(2,3,4,5)$

$$
F=x^{\prime} y+x y^{\prime}
$$

Fig. 3-4 Map for Example 3-1; $F(x, y, z)=\Sigma(2,3,4,5)=x^{\prime} y+x y^{\prime}$

Ex 3-4) Simplify the Boolean Function, $F(x, y, z)=\Sigma(0,2,4,5,6)$

$$
F=z^{\prime}+x y^{\prime}
$$

Example

Ex 3-4) Given Boolean function, $F=A^{\prime} C+A^{\prime} B+A B^{`} C+B C$
a) express it in sum of minterms

$$
F(x, y, z)=\Sigma(1,2,3,5,7)
$$

b) find the minimal sum of products

$$
F=C+A^{\prime} B
$$

Fig. 3-7 Map for Example 3-4; $A^{\prime} C+A^{\prime} B+A B^{\prime} C+B C=C+A^{\prime} B$

Four-Variable Map

m_{0}	m_{1}	m_{3}	m_{2}
m_{4}	m_{5}	m_{7}	m_{6}
m_{12}	m_{13}	m_{15}	m_{14}
m_{8}	m_{9}	m_{11}	m_{10}

(a)

(b)

Fig. 3-8 Four-variable Map
Ex 3-5) Simplify the Boolean function, $F(w, x, y, z)=\Sigma(0,1,2,4,5,6,8,9,12,13,14)$

$$
F=y^{\prime}+w^{\prime} z^{\prime}+x z^{\prime}
$$

Fig. 3-9 Map for Example 3-5; $F(w, x, y, z)$
$=\Sigma(0,1,2,4,5,6,8,9,12,13,14)=\mathrm{y}^{\prime}+w^{\prime} z^{\prime}+x z^{\prime}$

Examples

1. Simplify the Boolean function

$$
\begin{gathered}
F(x, y, z)=\Sigma(3,4,6,7) \\
y z+x z^{\prime}
\end{gathered}
$$

2. Simplify the Boolean function

$$
\begin{aligned}
& F(x, y, z)=\Sigma(0,2,4,5,6) \\
& z^{\prime}+x y^{\prime}
\end{aligned}
$$

Prime Implicants

Prime Implicant is a product term obtained by combining the maximum possible number of adjacent squares in the map.

$$
F(A, B, C, D)=\Sigma(0,2,3,5,7,8,9,10,11,13,15)
$$

$$
\begin{aligned}
F & =B D+B^{\prime} D^{\prime}+C D+A D \\
& =B D+B^{\prime} D^{\prime}+C D+A B^{\prime} \\
& =B D+B^{\prime} D^{\prime}+B^{\prime} C+A D \\
& =B D+B^{\prime} D^{\prime}+B^{\prime} C+A B^{\prime}
\end{aligned}
$$

(b) Prime implicants $\mathrm{CD}, \mathrm{B}^{\prime} \mathrm{C}$
$A D$, and $A B^{\prime}$

Fig. 3-11 Simplification Using Prime Implicants

Five-Variable Map

Fig. 3-12 Five-variable Map

Example

Ex 3-7) Simplify the Boolean function,

$$
F(A, B, C, D, E)=\Sigma(0,2,4,6,9,13,21,23,25,29,31)
$$

Fig. 3-13 Map for Example 3-7; $F=A^{\prime} B^{\prime} E^{\prime}+B D^{\prime} E+A C E$

$$
F=A^{\prime} B^{\prime} E^{\prime}+B D^{\prime} E+A C E
$$

Examples

1. Simplify the following Boolean functions by first finding the essential prime implicants:

$$
F(A, B, C, D)=\Sigma(0,2,3,5,7,8,10,11,14,15)
$$

i) find the essential prime implicants $C D+B^{\prime} D^{\prime}$
ii) find the non essential prime implicants $A C+A^{\prime} B D$
iii) simplify function F
$C D+B^{\prime} D^{\prime}+A C+A^{\prime} B D$
2. Simplify the following Boolean functions, using five-variable maps:

$$
\begin{gathered}
F(A, B, C, D, E)=\Sigma(0,1,4,5,16,17,21,25,29) \\
\text { Ans) } A^{\prime} B^{\prime} D^{\prime}+B^{\prime} C^{\prime} D^{\prime}+A D^{\prime} E
\end{gathered}
$$

Product of Sums Simplification

Ex 3-8) Simplify the Boolean function,

$$
F(A, B, C, D)=\Sigma(0,1,2,5,8,9,10)
$$

a) sum of products

$$
F=B^{\prime} D^{\prime}+B^{\prime} C^{\prime}+A^{\prime} C^{\prime} D
$$

b) product of sum

$$
\begin{aligned}
& F^{\prime}=A B+C D+B D^{\prime} \\
& F=\left(A^{\prime}+B^{\prime}\right)\left(C^{\prime}+D^{\prime}\right)\left(B^{\prime}+D\right)
\end{aligned}
$$

Fig. 3-14 Map for Example 3-8; $F(A, B, C, D)=\Sigma(0,1,2,5,8,9,10)$
$=\mathrm{B}^{\prime} D^{\prime}+B^{\prime} C^{\prime}+A^{\prime} C^{\prime} D=\left(A^{\prime}+B^{\prime}\right)\left(C^{\prime}+D^{\prime}\right)\left(B^{\prime}+D\right)$

(a) $F=B^{\prime} D^{\prime}+B^{\prime} C^{\prime}+A^{\prime} C^{\prime} D$

(b) $F=\left(A^{\prime}+B^{\prime}\right)\left(C^{\prime}+D^{\prime}\right)\left(B^{\prime}+D\right)$

Product of Sums Simplification

Table 3-2
Truth Table of Function F

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	\boldsymbol{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Fig. 3-16 Map for the Function of Table 3-2

$$
\begin{gathered}
F(x, y, z)=\Sigma(1,3,4,6)=\Pi(0,2,5,7) \\
F=x^{\prime} z+x z^{\prime} \\
F^{\prime}=x z+x^{\prime} z^{\prime} \\
F=\left(x^{\prime}+z^{\prime}\right)(x+z)
\end{gathered}
$$

Examples

Simplify the following Boolean functions in product of sums:

$$
\begin{gathered}
\text { 1. } F(w, x, y, z)=\sum(0,2,5,6,7,8,10) \\
\text { Ans) }\left(w^{\prime}+x^{\prime}\right)\left(x+z^{\prime}\right)\left(x^{\prime}+y+z\right) \\
\text { 2. } F(A, B, C, D)=\Pi(1,3,5,7,13,15) \\
\text { Ans) }\left(B^{\prime}+D^{\prime}\right)\left(A+D^{\prime}\right)
\end{gathered}
$$

Don't-Care Conditions

Ex 3-9) Simplify the Boolean function, $F(w, x, y, z)=\Sigma(1,3,7,11,15)$ Don't-care conditions, $d(w, x, y, z)=\Sigma(0,2,5)$

(a) $F=y z+w^{\prime} x^{\prime}$

(a) $F=y z+w^{\prime} z$

Fig. 3-17 Example with don't-care Conditions

$$
\begin{aligned}
& F(w, x, y, z)=y z+w^{\prime} x^{\prime}=\Sigma(0,1,2,3,7,11,15) \\
& F(w, x, y, z)=y z+w^{\prime} z=\Sigma(1,3,5,7,11,15)
\end{aligned}
$$

NAND and NOR Implementation

- Digital circuits are frequently constructed with NAND or NOR gates rather than AND and OR gates
- NAND and NOR gates are easier to fabricate with electronic components
- Basic gates used in all IC digital logic families

NAND Circuits

．NAND Circuit

Fig．3－18 Logic Operations with NAND Gates

（a）AND－invert

Fig．3－19 Two Graphic Symbols for NAND Gate

Two－Level Implementation

$F=\left((A B)^{\prime}(C D)^{\prime}\right)^{\prime}=A B+C D$

（a）

（b）

（c）

Fig．3－20 Three Ways to Implement $F=A B+C D$
Ex 3－10）Implement the following Boolean function with NAND gates：
$F(x, y, z)=\Sigma(1,2,3,4,5,7)=x y^{\prime}+x^{\prime} y+z$

Fig．3－21 Solution to Example 3－10

Multilevel NAND Circuits

- Convert all AND to NAND with NAND-inverter
- Convert all OR to NAND with inverter-NAND
- Check all the inverter in the diagram. For every inverter that is not compensated by another circle along the same line, insert an inverter (one-input NAND gate) or complement the input literal

Example-Multilevel NAND Circuits

(a) AND-OR gates

(a) NAND gates

Fig. 3-22 Implementing $F=A(C D+B)+B C^{\text {‘ }}$

Example-Multilevel NAND Circuits

 $F=\left(A B^{\prime}+A^{\prime} B\right)\left(C+D^{\prime}\right)$
(a) AND-OR gates

(b) NAND gates

NOR Implementation

Inverter
 x^{\prime}

Fig. 3-24 Logic Operations with NOR Gates

(a) OR-invert

(a) Invert-AND

Fig. 3-25 Two Graphic Symbols for NOR Gate

NOR Operation is the Dual of the NAND

- OR gates to NOR gates with NOR-invert
- AND gates to NOR gates with invert-NOR
- Any Inverter that is not compensated by another inverter along the same line needs an inverter or the complementation of the input literal

Example

- $F=\left(A B^{\prime}+A^{\prime} B\right)\left(C+D^{\prime}\right)$

Fig. 3-27 Implementing $F=\left(A B^{\prime}+A^{\prime} B\right)\left(C+D^{\prime}\right)$ with NOR Gates

Exclusive-OR Function

XOR: $x \oplus y=x y^{\prime}+x^{\prime} y$
XNOR: $(x \oplus y)^{\prime}=x y+x^{\prime} y^{\prime}$

$$
x \oplus 0=x
$$

$$
x \oplus 1=x^{\prime}
$$

$$
x \oplus x=0
$$

$$
x \oplus x^{\prime}=1
$$

$$
x \oplus y^{\prime}=x^{\prime} \oplus y=(x \oplus y)^{\prime}
$$

(a) With AND-OR-NOT gates

(b) With NAND gates

Fig. 3-32 Exclusive-OR Implementations

Parity Generation and Checking

Three-Bit Message			Parity Bit
\boldsymbol{x}	\boldsymbol{y}	z	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

(a) 3-bit even parity generator

Table 3-5

Table 3-5
Even-Parity-Checker Truth Table

\boldsymbol{x}	Four Bits Received			Parity ErrorCheck
	y	z	P	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
I	1	1	1	0
y				

(a) 4-bit even parity checker

Fig. 3-36 Logic Diagram of a Parity Generator and Checker

HDL(Hardware Description Language)


```
//HDL Example 3-1
//Description of the simple circuit of Fig. 3-37
module smpl_circuit(A,B,C,x,y);
    input A,B,C;
    output x,y;
    wire e;
    and g1(e,A,B);
    not g2(y, C);
    or g3(x,e,y);
endmodule
```

