Gate-Level Minimization

Jee-Hwan Ryu

School of Mechanical Engineering Korea University of Technology and Education

Gate-Level Minimization-The Map Method

- Truth table is unique
- Many different algebraic expression
- Boolean expressions may be simplified by algebraic means
- But, awkward due to the lack of specific rules
- Karnaugh Map or K-map method
 - Pictorial form of truth table
 - A simple and straight forward procedure

Korea University of Technology and Education

3/29

101

minimum number of inputs to the gate Simplest expression is not unique

Produces a circuit diagram with a

minimum number of gates and the

Why Need to be Simple ?

Three-Variable Map

Not in a binary sequence, but in a sequence similar to Gray code

$$m_{5} + m_{7} = xy'z + xyz = xz(y + y') = xz$$

$$m_{0} + m_{2} = x'y'z' + x'yz' = x'z'(y' + y) = x'z'$$

Korea University of Technology and Education

Examples

Ex 3-1) Simplify the Boolean function, $F(x, y, z) = \Sigma(2, 3, 4, 5)$

$$F = x'y + xy'$$

x	<i>yz</i> 0 0	01	11	10
0			1	1
1	1	1		

Fig. 3-4 Map for Example 3-1; $F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$

Ex 3-4) Simplify the Boolean Function, $F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$

Korea University of Technology and Education

1 🗖 0 1

5/29

d 0 1

Ex 3-4) Given Boolean function, F = A'C + A'B + AB'C + BCa) express it in sum of minterms

 $F(x, y, z) = \Sigma(1, 2, 3, 5, 7)$

b) find the minimal sum of products F = C + A'B

Fig. 3-7 Map for Example 3-4; A'C + A'B + AB'C + BC = C + A'B

Korea University of Technology and Education

7/29

n – n 1

Four-Variable Map

 $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

$$F = y' + w'z' + xz$$

Fig. 3-9 Map for Example 3-5; F(w, x, y, z)= Σ (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y' + w'z' + xz'

1

w

10

1

Korea University of Technology and Education

Examples

1. Simplify the Boolean function

$$F(x, y, z) = \Sigma(3, 4, 6, 7)$$

$$yz + xz'$$

2. Simplify the Boolean function

 $F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$

$$z' + xy'$$

Korea University of Technology and Education

Prime Implicants

Prime Implicant is a product term obtained by combining the maximum possible number of adjacent squares in the map.

 $F(A,B,C,D) = \Sigma(0,2,3,5,7,8,9,10,11,13,15)$

Korea University of Technology and Education

n – a 1

9/29

Fig. 3-12 Five-variable Map

11/29

a a

Example

Ex 3–7) Simplify the Boolean function, $F(A,B,C,D,E) = \Sigma(0,2,4,6,9,13,21,23,25,29,31)$

Fig. 3-13 Map for Example 3-7; F = A'B'E' + BD'E + ACE

F = A'B'E' + BD'E + ACE

Examples

1. Simplify the following Boolean functions by first finding the essential prime implicants:

 $F(A,B,C,D) = \Sigma(0,2,3,5,7,8,10,11,14,15)$

- i) find the essential prime implicants CD+B'D'
- ii) find the non essential prime implicants AC+A'BD
- iii) simplify function F CD+B'D'+AC+A'BD
- 2. Simplify the following Boolean functions, using five-variable maps:

F(A,B,C,D,E)=∑(0,1,4,5,16,17,21,25,29) Ans) A'B'D'+B'C'D'+AD'E

Korea University of Technology and Education

13/29

Korea University of Technology and Education

Product of Sums Simplification

Table	3-2			
Truth	Table	of	Function	F

		the second se	
x	y	z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

уz			у		
	x	<i>yz</i> 0 0	01	11	10
	0	0	1	1	0
x	1	1	0	0	1
					,

Fig. 3-16 Map for the Function of Table 3-2

 $F(x, y, z) = \Sigma(1, 3, 4, 6) = \Pi(0, 2, 5, 7)$ F = x'z + xz' F' = xz + x'z'F = (x'+z')(x + z)

Korea University of Technology and Education

Examples

Simplify the following Boolean functions in product of sums:

1. $F(w, x, y, z) = \Sigma(0, 2, 5, 6, 7, 8, 10)$ Ans) (w'+x')(x+z')(x'+y+z)

2. $F(A,B,C,D) = \square(1,3,5,7,13,15)$ Ans) (B'+D')(A+D') 15/29

00

Don't-Care Conditions

Ex 3-9) Simplify the Boolean function, $F(w, x, y, z) = \Sigma(1,3,7,11,15)$ Don't-care conditions, $d(w, x, y, z) = \Sigma(0, 2, 5)$

Fig. 3-17 Example with don't-care Conditions

 $F(w, x, y, z) = yz + w'x' = \Sigma(0, 1, 2, 3, 7, 11, 15)$ $F(w, x, y, z) = yz + w'z = \Sigma(1, 3, 5, 7, 11, 15)$

Korea University of Technology and Education

17/29

NAND and NOR Implementation

- Digital circuits are frequently constructed with NAND or NOR gates rather than AND and OR gates
- NAND and NOR gates are easier to fabricate with electronic components
- Basic gates used in all IC digital logic families

NAND Circuits

Fig. 3-21 Solution to Example 3-10

(b)

Korea University of Technology and Education

z

(c)

Multilevel NAND Circuits

- Convert all AND to NAND with NAND-inverter
- Convert all OR to NAND with inverter-NAND
- Check all the inverter in the diagram. For every inverter that is not compensated by another circle along the same line, insert an inverter (one-input NAND gate) or complement the input literal

Korea University of Technology and Education

Example-Multilevel NAND Circuits

Korea University of Technology and Education

21/29

Exclusive-OR Function

 $XOR: x \oplus y = xy' + x'y$ $XNOR: (x \oplus y)' = xy + x'y'$

 $x \oplus 0 = x$

$$x \oplus 1 = x'$$

 $x \oplus x = 0$

$$x \oplus x' = 1$$

$$x \oplus y' = x' \oplus y = (x \oplus y)$$

Korea University of Technology and Education

27/29

] [] []

1 🗖 0 1

Parity Generation and Checking

ole 3 n-Par		rator Truth	Table			Bits		Parity Error Check
		10		x	у	z	Р	c
hree	-Bit Me	ssage	Parity Bit	0	0	0	0	0
~		7	P	0	0	0	1	1
x	У	Z	P	0	0	1	0	1
0	0	0	0	0	0	1	1	0
0	-12	0	0	0	1	0	0	1
0	0	1	1	0	1	0	1	0
0	1	0	1	0	1	1	0	0
0	1	1	0	0	0	0	0	1
1	0	0	1	1	0	0	1	0
1	0	1	0	1	0	1	0	0
<u>.</u>		1	0	1	0	i	1	1
1	1	0	0	1	1	0	0	0
1	1	1	1	1	1	0	1	1
				1	1	1	0	1
				1	1	1	1	0
<i>x</i> —	-11			<i>x</i> –	-1			
y —	\parallel		P	у —	/			1
			Same circuit for che	cking _{z –}		_		$+\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
z —			and generation P=0	P -][\sum		

Fig. 3-36 Logic Diagram of a Parity Generator and Checker

Korea University of Technology and Education

HDL(Hardware Description Language)

Korea University of Technology and Education

29/29