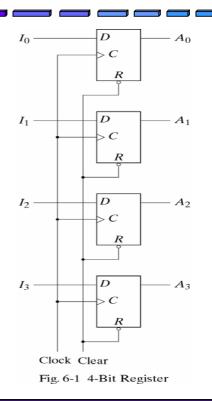
MEC520 디지털 공학

Registers and Counters

Jee-Hwan Ryu

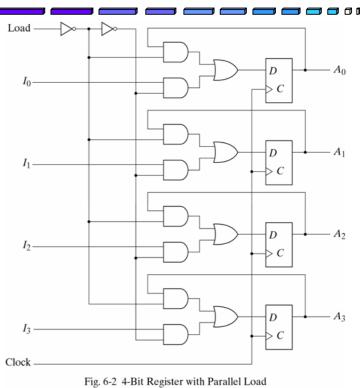

School of Mechanical Engineering Korea University of Technology and Education

Registers and Counters

- Circuits that include flip-flops are usually classified by the function they perform
 - Registers
 - Counters
- Register is a group of flip-flops.
- Each flip-flop is capable of storing one bit of information.
- An n-bit register consists of a group of n flip-flops.
- Register is a group of binary cells suitable for holding binary information.
- A counter is essentially a register that goes through a predetermined sequence of states.

Registers

- Clock= 0 to 1 ; Input information is transferred to output : I -> A
- Clock = 0 and 1; Output unchanged
- Clear = 0 ; Clearing the register to all 0's prior to its clocked operation.
- Clear : asynchronous input.


Korea University of Technology and Education

Register with Parallel Load

- Synchronous digital systems have a master clock generator that supplies a continuous train of clock pulses.
- The transfer of new information into a register is referred to as loading the register.
- If all the bits of the register are loaded simultaneously with a common clock pulse, we say that the loading is done in parallel.
- The load input determines whether the next pulse will accept new information or leave the information in the register intact

Register with Parallel Load

- Load = 1 ; the | inputs are transferred into the register
- Load = 0 ; maintain the content of the register
- Because the D flip-flop does not have a "no change"

1 🗖 0 1

Korea University of Technology and Education

Shift Registers

 Capable of shifting its binary information in one or both directions

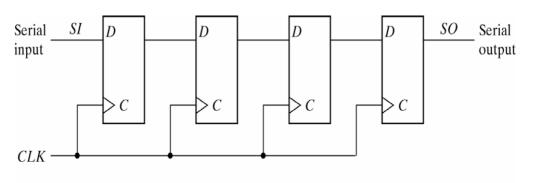
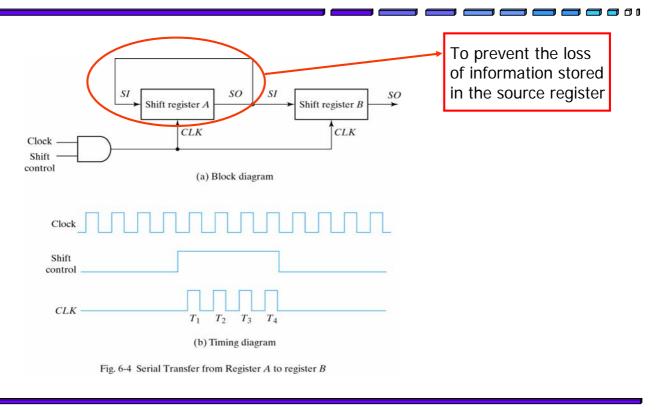



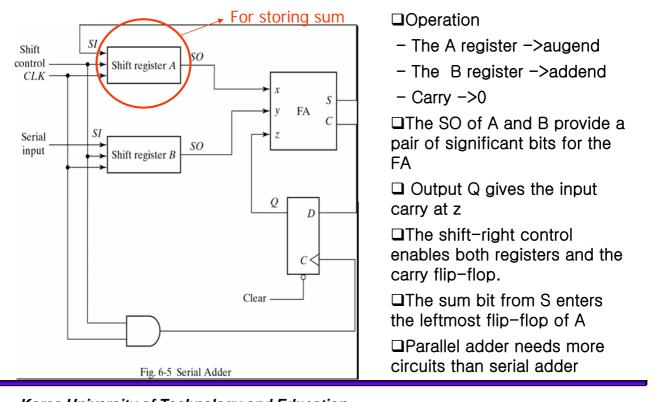
Fig. 6-3 4-Bit Shift Register

The simplest shift register

Shift Registers: Serial Transfer

Korea University of Technology and Education

Serial-Transfer Example


Table 6–1: Serial-Transfer Example

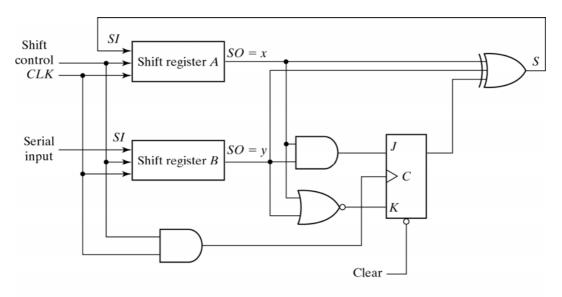
] (] (

Timing pulse	Shift register A	Shift register B	Serial output of B
Initial value	1011	0010	
After T ₁	1101	1001	0
After T ₂	1110	1100	1
After T₃	0111	0110	0
After T₄	1011	1011	0

A is transferred into B, while the content of A remains unchanged

Serial Addition

n – n 1


d 0 0

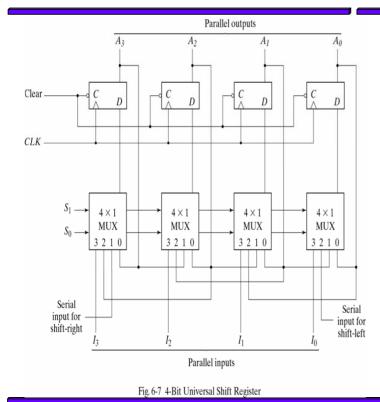
Korea University of Technology and Education

State Table for Serial Adder

Present State	Inp	uts	Next State	Output	Flip-Flop Inputs		
Q	X	у	Q	S	Jq	K	
0	0	0	0	0	0	Х	
0	0	1	0	1	0	Х	
0	1	0	0	1	0	Х	
0	1	1	1	0	1	Х	
1	0	0	0	1	X	1	
1	0	1	1	0	Х	0	
1	1	0	1	0	X	0	
1	1	1	1	1	Х	0	

Second form of Serial Adder

101


Fig. 6-6 Second form of Serial Adder

Universal Shift Register

- If the register has both shifts and parallel load capabilities, it is referred to as a universal shift register.
- A clear control to clear the register to 0.
- A clock input to synchronize the operations.
- A shift-right control to enable the shift right operation and the serial input and output lines associated with the shift right.
- A shift-left control to enable the shift left operation and the serial input and output lines associated with the shift left.
- A parallel-load control to enable a parallel transfer and the n input lines associated with the parallel transfer.
- n parallel output lines
- A control state that leaves the information in the register unchanged in the presence of the clock.

Universal Shift Register

 $\Box S_1, S_0 \rightarrow 0, 0$; No change

 \Box S₁, S₀ -> 0, 1 ; Shift right, The serial input for shift-right is transferred to the A3.

n – n n

 $\Box S_1, S_0 \rightarrow 1, 0$; Shift left, The serial input for shift–left is transferred to the A0.

 $\Box S_1$, $S_0 \rightarrow 1$, 1 ;Parallel load

Korea University of Technology and Education

Universal Shift Register

- Shift register are often used to interface digital systems.
- Suppose it is necessary to transmit an n-bit quantity between two points.
 - It will be expensive to use n lines to transmit the n bits in parallel.
 - It is more economical to use a single line and transmit the information serially, one bit at a time.
 - The transmitter accepts the n-bit data in parallel into a shift register and then transmits the data serially along the common line.
 - The receiver accepts the data serially into a shift register.
 - When all n-bits are received, they can be taken from the outputs of the register in parallel.
- The transmitter: a parallel-to-serial conversion of data, the receiver: a serial-to-parallel conversion.

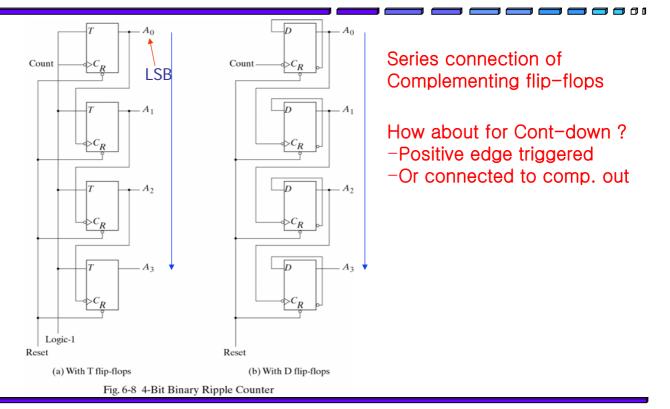
Counters

- A register that goes through a prescribed sequence of states upon the application of input pulses is called a counter.
- The input pulses may be clock pulses or they may originated from some external source and may occur at a fixed interval of time or at random.
- A counter that follows the binary number sequence is called a binary counter.
- An n-bit binary counter consists of n flip-flops and can count in binary from 0 through 2ⁿ -1.

Korea University of Technology and Education

Counters

- Counters in two categories
 - Ripple counters
 - Synchronous counters

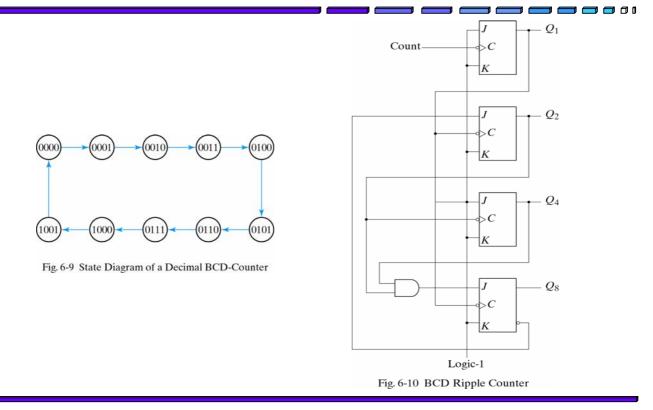

Ripple counters

- The flip-flop output transition serves as a source for triggering other flip-flops.
- The C input some or all flip-flops are triggered not by the common clock pulses, but rather by the transition that occurs in other flip-flop outputs.

Synchronous counters

• The C inputs of all flip-flops receive the common clock .

Binary Ripple Counters

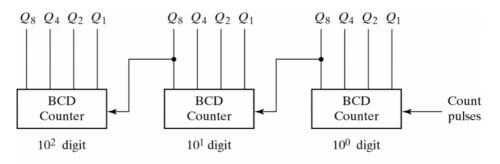

Korea University of Technology and Education

Count Sequence for a Binary Ripple Counter

d 0 1

Count sequence A ₃ A ₂ A ₁ A ₀		Conditions for Complementing
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Complement Ao Complement Ao Complement Ao Complement Ao Complement Ao Complement Ao Complement Ao Complement Ao	A₀ will go from 1 to 0 and complement A₁ A₀ will go from 1 to 0 and complement A₁ ; A₁will go from 1 to 0 and complement A₂ A₀ will go from 1 to 0 and complement A₁

BCD Ripple Counter



Korea University of Technology and Education

BCD Ripple Counter

- Q1 is complemented on the negative edge of every count pulse.
- Q2 is complemented if Q8=0 and Q1 goes from 1 to 0. Q2 is cleared if Q8=1 and Q1 goes from 1 to 0.
- Q4 is complemented when Q2 goes from 1 to 0.
- Q8 is complemented when Q4Q2=11 and Q1 goes from 1 to 0. Q8 is cleared if either Q4 or Q2 is 0 and Q1 goes from 1 to 0

Three-Decade Decimal BCD Counter

101

Fig. 6-11 Block Diagram of a Three-Decade Decimal BCD Counter

- □ To count from 0 to 999, We need a three-decade counter.
- □ When Q8 in one decade goes from 1 to 0, it triggers the count

Korea University of Technology and Education

Synchronous Counters

- Clock pulses are applied to the inputs of all flip-flops
- A common clock triggers all flip-flops simultaneously rather than one at a time as in a ripple counter

Synchronous Binary Counter

- The first stage A0 has its J and K equal to 1 if the counter is enabled.
- The other J and K inputs are equal to 1 if all previous loworder bits are equal to 1 and the count is enabled.
- A flip-flop in any other position is complemented when all the bits in the lower significant positions are equal to 1
 - A3A2A1A0=0011 -> 0100

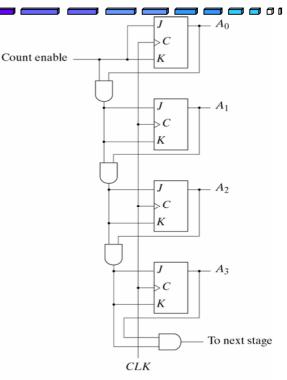


Fig. 6-12 4-Bit Synchronous Binary Counter

Korea University of Technology and Education

Up-Down Binary Counter

- Up input control=1 ;count up (the T inputs receive their signals from the values of the previous normal outputs of the flipflops.)
- Down input control=1, up input control=0 ; count down
- Up=down=0 ;unchanged state
- Up=down=1 ;count up

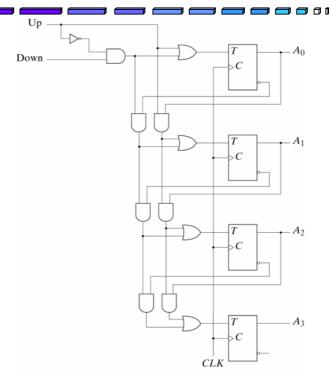
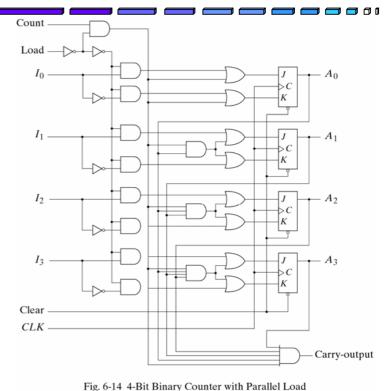


Fig. 6-13 4-Bit Up-Down Binary Counter

BCD Counter

Present State				Next State				Output	Flip-Flop Inputs				
Q ₈	Q4	Q2	Q1	Q ₈	Q4	Q2	Q1	y	TQ ₈	TQ4	TQ2	TQ	
0	0	0	0	0	0	0	1	0	0	0	0	1	
0	0	0	1	0	0	1	0	0	0	0	1	1	
0	0	1	0	0	0	1	1	0	0	0	0	1	
0	0	1	1	0	1	0	0	0	0	1	1	1	
0	1	0	0	0	1	0	1	0	0	0	0	1	
0	1	0	1	0	1	1	0	0	0	0	1	1	
0	1	1	0	0	1	1	1	0	0	0	0	1	
0	1	1	1	1	0	0	0	0	1	1	1	1	
1	0	0	0	1	0	0	1	0	0	0	0	1	
1	0	0	1	0	0	0	0	1	1	0	0	1	
				ΤQ	1=1								
				T q	2 = Q	$2'^8Q_1$	l						
				$T_{Q4} = Q_2 Q_1$									
							$+0_{4}$	Q_2Q_1					
				-	= Q8Q	~	' £''	e-z'					


Korea University of Technology and Education

Example

 Design a synchronous BCD counter with J-K flip-flops.

Binary Counter with Parallel Load

- Parallel load for initial number
- Input load control=1; disables the count sequence, data transfer
- Load =0 and count=1 ;count
- Load=0 and count=0 ;unchanged
- Carry out=1 (all flipflop=1 and Count=1)

Korea University of Technology and Education

BCD Counter using Binary Counter with Parallel

- The AND gate detects the occurrence of state 1001(9) in the output. In this state, the load input is enabled and all-0's input is loaded into register.
- The NAND gate detects the count of 1010(10), as soon as this count occurs the register is cleared.
- A momentary spike occurs in output A2 as the count goes from 1001 to 1010 and immediately to 0000

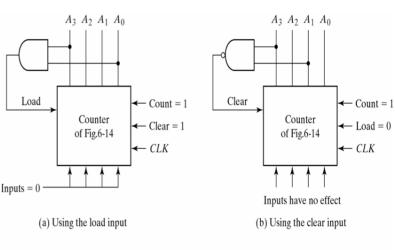
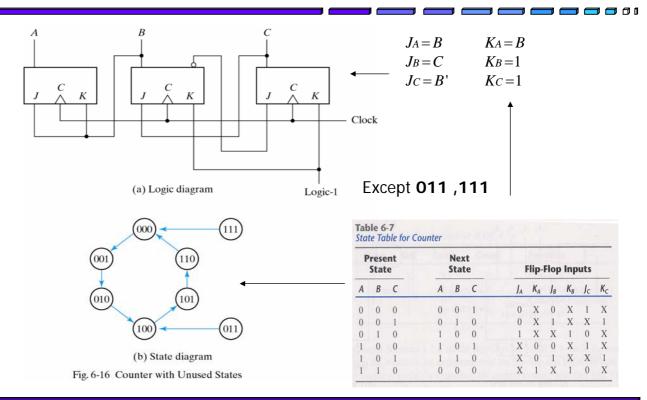
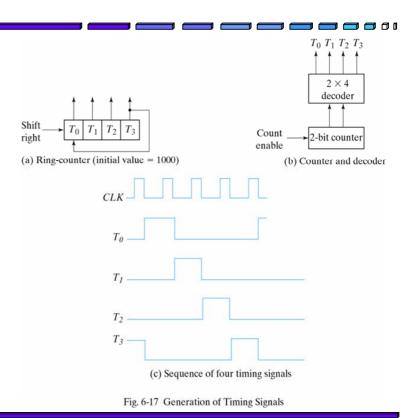



Fig. 6-15 Two ways to Achieve a BCD Counter Using a Counter with Parallel Load

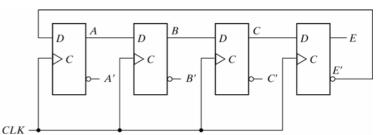
Other Counters


Korea University of Technology and Education

Example

• Design a counter with the following repeated binary sequence: 0, 1, 2, 4, 6. Use D flip-flops

Ring Counter


- For generating timing signal that control the sequence of operations
- A circular shift register with only one flip-flop being set at any particular time; all others are cleared.
- The single bit is shifted from one flip-flop to the other.
- 2ⁿ timing signals need
 2ⁿ flip-flops

Korea University of Technology and Education

Johnson Counter

- A circular shift register with the complement output of the last flipflop connected to the input of the first flipflop.
- A k-bit switch-tail ring counter will go through a sequence of 2k states.
- A Johnson counter is a k-bit switch-tail ring counter with 2k decoding gates to provide outputs for 2k timing signals.

(a) Four-stage switch-tail ring counter

Sequence	Fli	p-flop	outpu	AND gate require			
number	A	В	С	E	for output		
1	0	0	0	0	A'E'		
2	1	0	0	0	AB'		
3	1	1	0	0	BC'		
4	1	1	1	0	CE'		
5	1	1	1	1	AE		
6	0	1	1	1	A'B		
7	0	0	1	1	B'C		
8	0	0	0	1	C'E		

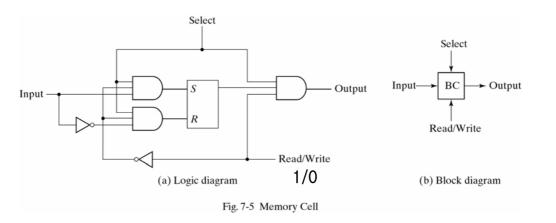
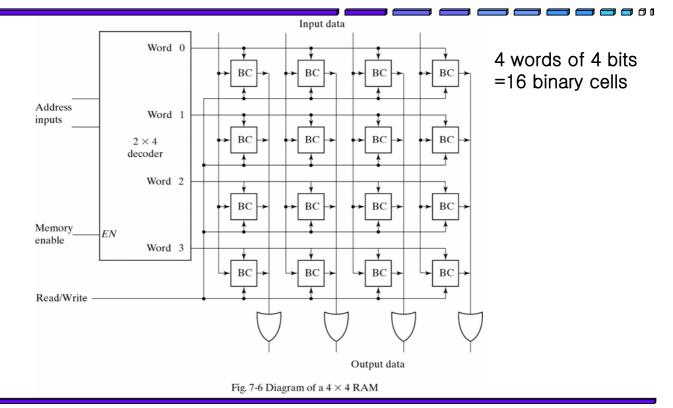

(b) Count sequence and required decoding

Fig. 6-18 Construction of a Johnson Counter

Memory Decoding


 The equivalent logic of a binary cell that stores one bit of information 7 0 1

- The binary cell stores one bit in its internal flip-flop
- It has three inputs and one output. The read/write input determines the cell operation when it is selected.

Korea University of Technology and Education

Internal Construction

Korea University of Technology and Education

Read-Only Memory

ROM = AND gates connected as a decoder + a number of OR gates

d d d d

1 🗖 🖉 1

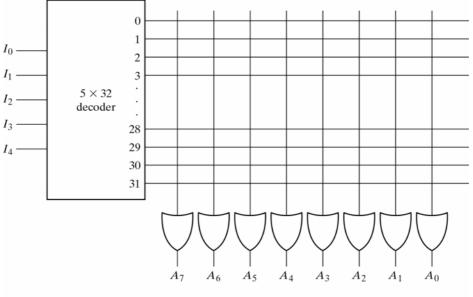
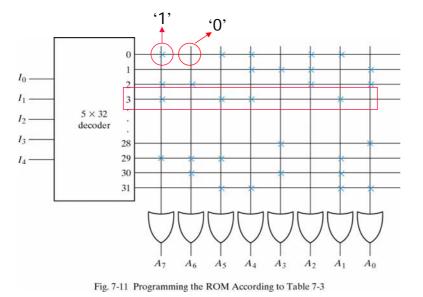


Fig. 7-10 Internal Logic of a 32×8 ROM

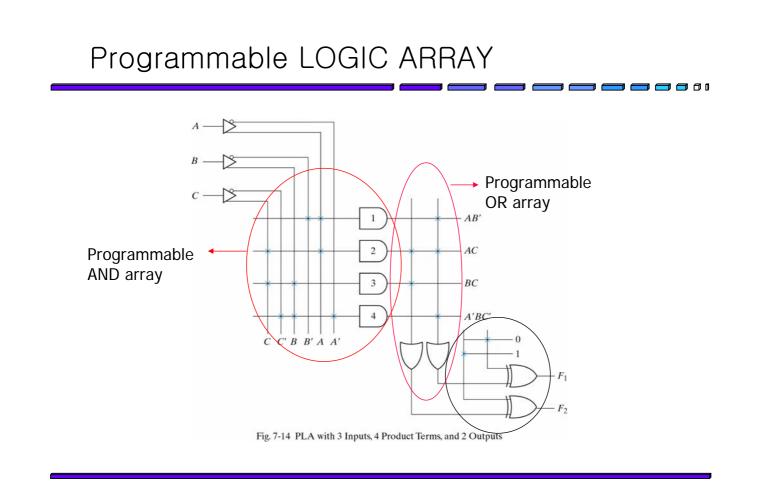

Korea University of Technology and Education

ROM Truth Table (Partial)

Table 7-3	
ROM Truth	Table (Partial)

Inputs				Outputs								
14	13	12	11	10	 A7	A6	A5	A4	A3	A2	A1	AO
0	0	0	0	0	1	0	1	1	0	1	1	0
0	0	0	0	1	0	0	0	1	1	1	0	1
0	0	0	1	0	1	1	0	0	0	1	0	1
0	0	0	1	1	1	0	1	1	0	0	1	0
		:					3					
1	1	1	0	0	0	0	0	0	1	0	0	1
1	1	1	0	1	1	1	1	0	0	0	1	0
1	1	1	1	0	0	1	0	0	1	0	1	0
1	1	1	1	1	0	0	1	1	0	0	1	1

Combinational Circuit Implementation



A₇(I₄,I₃,I₂,I₀)=Sum of minterms(0,2,3,...,29)

d d d d

Input->00011(3) Others-> all '0' Output->10110010

Korea University of Technology and Education

Korea University of Technology and Education