ME2025 Digital Control

Discrete Time Signals

Jee-Hwan Ryu

School of Mechanical Engineering Korea University of Technology and Education

Sampled Signals

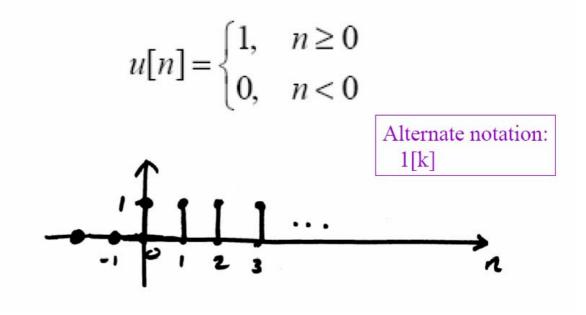
• Converting continuous time signal into discrete time system is unambiguous—e.g., sample value every T [note that we are throwing away information]

Given f(t) to

be a continuous time signal, f(kT) is the value of f(t) at t = kT. The discrete-time signal (or sequence) f[k] is defined only for k an integer. So if we derive f[k] from f(t) by sampling every T seconds, where T is the sample period, we get:

$$f[k] = f(kT) = f(t)|_{t=kT}$$

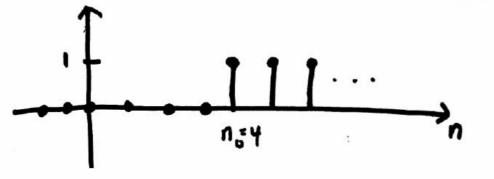
Discrete Time Unit Step Function



Time-shifted unit step function

$$u[n - n_0] = \begin{cases} 1, & n \ge n_0 \\ 0, & n < n_0 \end{cases}$$

Let $n_0=4$



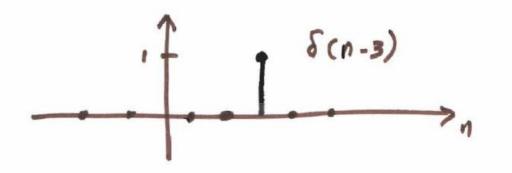
Discrete Time Unit Impulse Function

$$\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

Shifted Impulse Function

$$\delta[n-n_0] = \begin{cases} 1, & n=n_0\\ 0, & n \neq n_0 \end{cases}$$

Let $n_0=3$



Comparison—DT and CT

Continuous time	Discrete time
$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$	$u[n] = \sum_{k=-\infty}^{n} \delta[k]$
$\delta(t) \equiv \frac{d}{dt} u(t)$	$\delta[n] = u[n] - u[n-1]$
$x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$	$x[n]\delta[n-n_0] = x[n_0]\delta[n-n_0]$
$\int_{-\infty}^{\infty} x(t)\delta(t-t_0)dt = x(t_0)$	$\sum_{n=-\infty}^{\infty} x[n] \delta[n-n_0] = x[n_0]$

Adding and Subtracting Signals

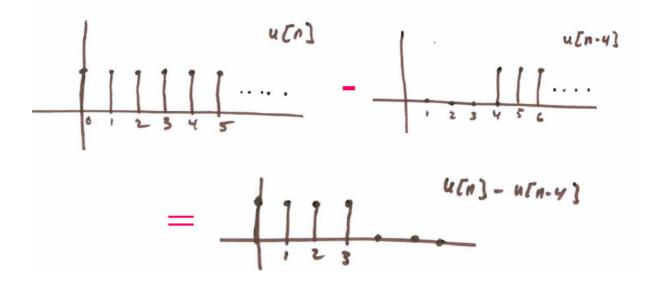
- Do it "point by point"
- Can do using a table, or graphically (or by computer program)
- Example:

$$x[n] = u[n] - u[n-4]$$

n	≤ -1	0	1	2	3	≥4
x[n]	0	1	1	1	1	0

Adding and Subtracting Signals

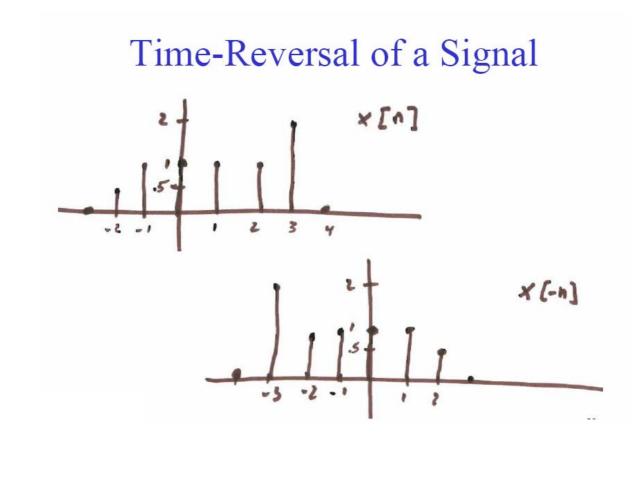
• Example: x[n] = u[n] - u[n-4]



Time-Reversal of a Signal

 $y[n] = x[m]\Big|_{m=-n} = x[-n]$

This reversal operation precisely flips a signal about the vertical axis.



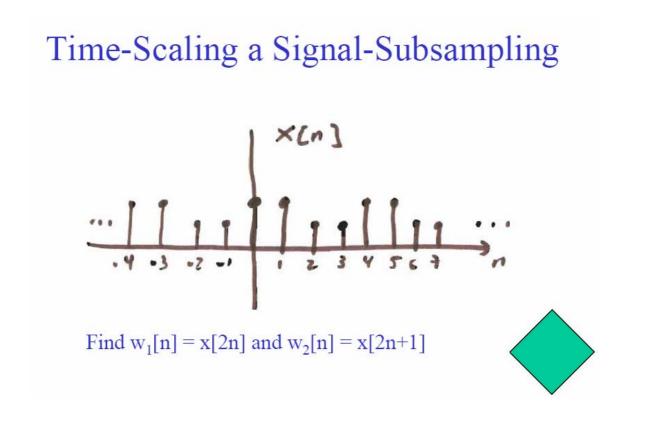
Time-Scaling a Signal

$$y[n] = x[m]\Big|_{m=an} = x[an]$$

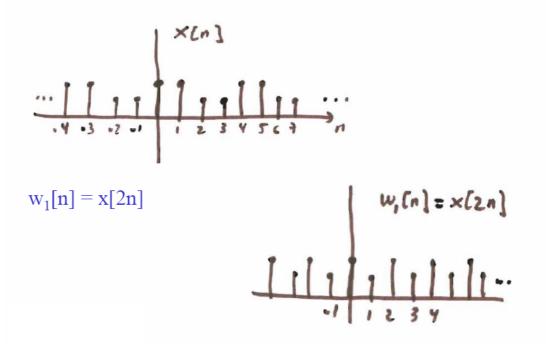
If |a| > 1, then SPEED UP by a factor of a. If |a| < 1, then SLOW DOWN by a factor of a.

Unlike continuous time, there are restrictions on a !

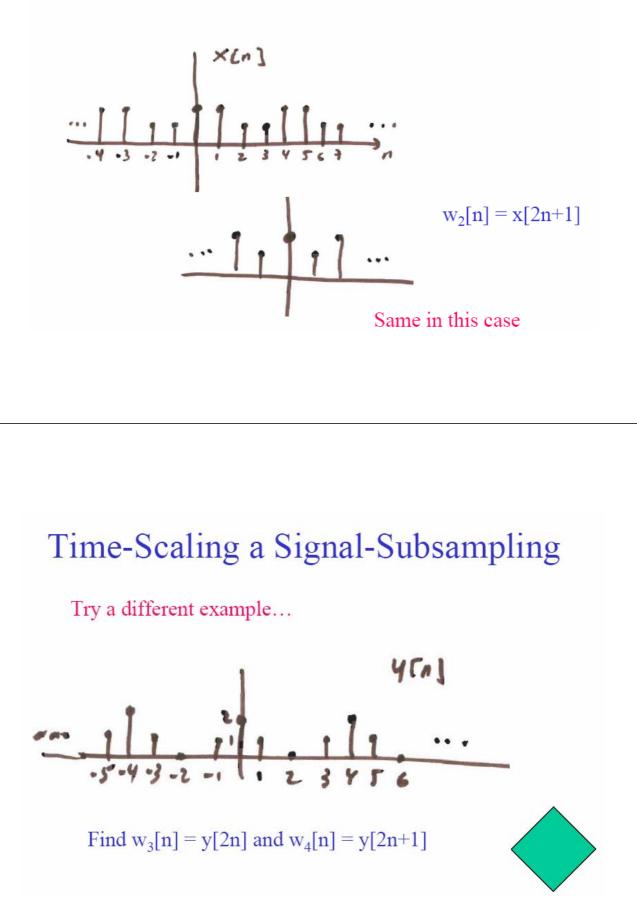
For speeding up (also known as "subsampling"), a must be an integer.

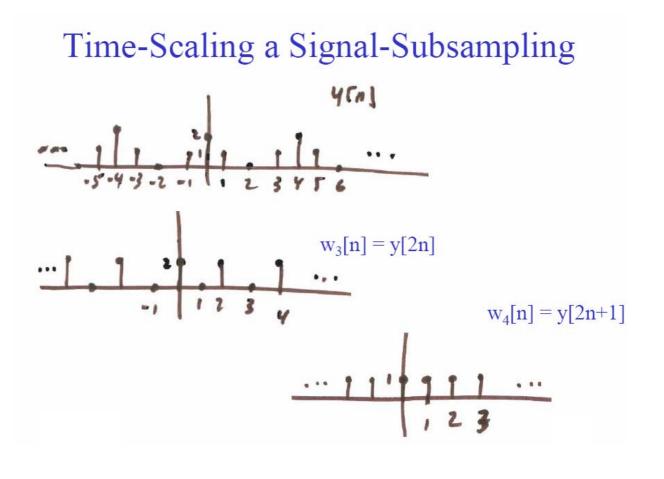


Time-Scaling a Signal-Subsampling



Time-Scaling a Signal-Subsampling





Time-Scaling a Signal-Slowing Down

For slowing down (expanding) a signal, you need a = 1/K where K is an integer. Example: Let K = 2 (a = 1/2) and find $z[n] = b[\frac{n}{2}]$

n		-
0	z[0] z[1] z[2]	b[0]
1	z[1]	??
2	z[2]	b[1]
3	<i>z</i> [3]	??

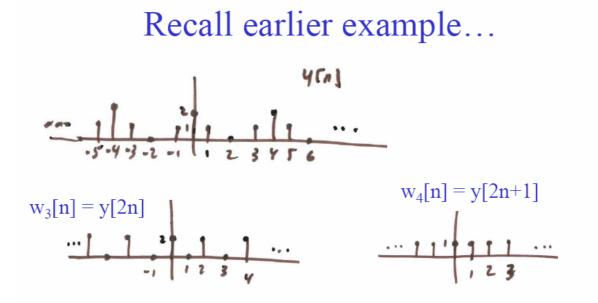
Values like $b[\frac{1}{2}]$ and $b[\frac{3}{2}]$ are not defined so how do we find z[1] and z[3]??

Time-Scaling a Signal-Slowing Down

One solution is to <u>INTERPOLATE</u> A simple, **but sub-optimal** interpolation rule is linear interpolation

				ſ	b[n/2],		n even	
n	z[n]	$b[\frac{n}{2}]$	z[n] =	$1/2{b[(n \cdot$	-1)/2]+b[(n+1)	/2]},	n odd	
0	<i>z</i> [0]	<i>b</i> [0]						
1	<i>z</i> [1]	??						
2	<i>z</i> [2]	b[1]						
3	<i>z</i> [3]	??						
 			1					

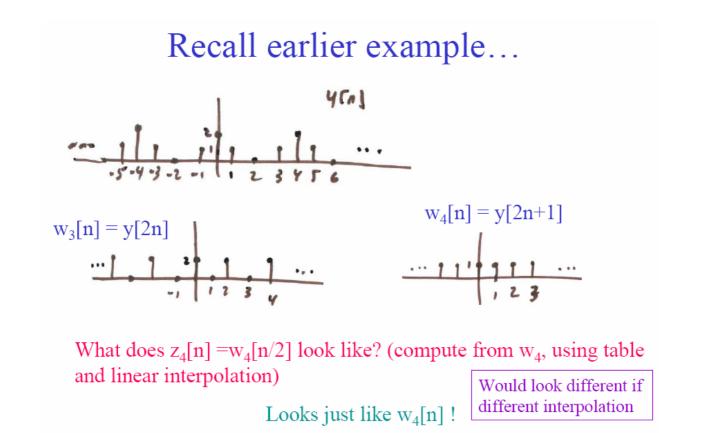
Interpolation can be used in a simple compression scheme – just transmit every other sample and fill in missing the values at the receiver.

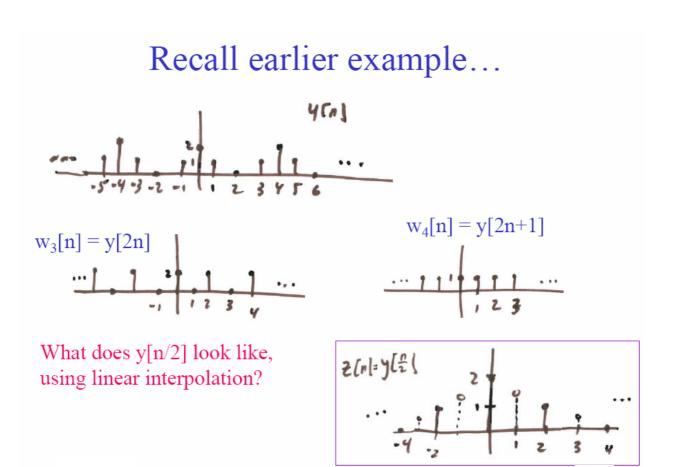


What does $z_3[n] = w_3[n/2]$ look like? (compute from w_3 , using table and **linear interpolation**)

Looks just like y[n] !

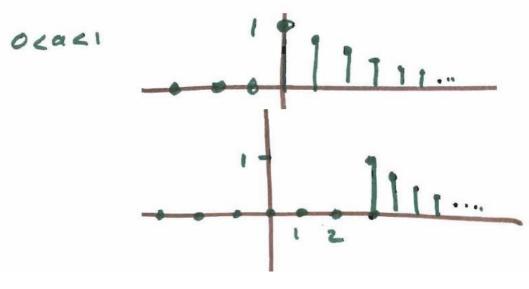
Would look different if different interpolation





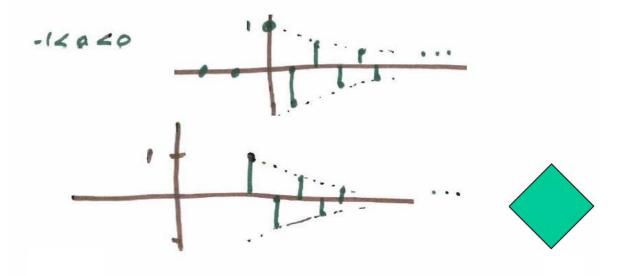
More Time-Shifting

Ex.: Given $x[n] = a^n u[n]$, |a| < 1, find and plot y[n] = x[n-3]



More Time-Shifting

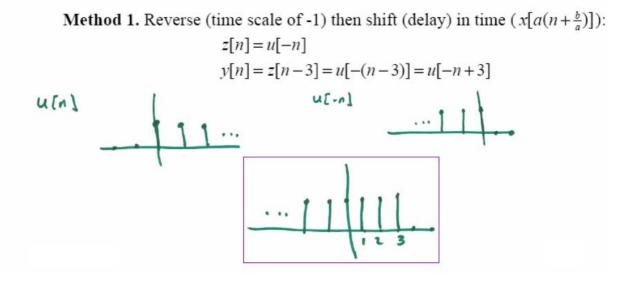
Ex.: Given $x[n] = a^n u[n]$, |a| < 1, find and plot y[n] = x[n-3]



Combining Time Shifting and Scaling

<u>Ex.</u> Find u[3-n],

There are two direct ways to solve this example:



Combining Time Shifting and Scaling

Combining Time Shifting and Scaling

Be careful—for some cases method 1 doesn't work! For example, if you want to form

$$z[n] = x[3-2n] = x\left[-2\left(n-\frac{3}{2}\right)\right],$$

What does it mean to shift a signal by 3/2 ?? To make sure, plug values into the table to check:

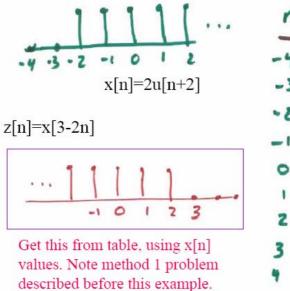
For other cases, method 2 doesn't work

п	z[n]	x[3-2n]
0	z[0]	x[3]
1	z[1]	x[1]
2	<i>z</i> [2]	x[-1]
-1	z[-1]	x[5]
-2	<i>z</i> [–2]	<i>x</i> [7]

Combining Time Shifting and Scaling

2

<u>Ex.</u> Let x[n] = 2u[n+2]. Find z[n] = x[3-2n].



n	× Cn]	3-20	×[3.21]
-4	0	11	2
-3	0	9	2
-2	2	7	2
-1	2	5	2
0	2	3	2
1	2	1	2
2	2	-1	2
3	2	-3	0
4		-5	0

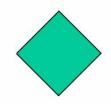
Combining Time Shifting and Scaling

 $\frac{\text{Ex.}}{\text{Find } y[n] = x[2-2n]:}$

x[2-2n] = x[-2(n-1)]

For method 1 approach, v[n] = x[-2n], then delay by 1. Or, just plug in values of n in a table.

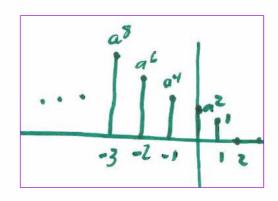
Ex. Let $y[n] = a^n u[n]$, where a > 1. Find and plot z[n] = y[-2n+2].



Combining Time Shifting and Scaling

Ex. Let $y[n] = a^n u[n]$, where a > 1. Find and plot z[n] = y[-2n+2].

 $\begin{aligned} z[o] &= y[-2n+2] = y[z] = a^2 \\ z[i] &= y[-2n+2] = y[o] = 1 \\ z[i] &= y[-2n+2] = y[o] = 1 \\ z[i] &= y[-2n+2] = y[-2] = 0 \\ z[-n] &= y[-2n+2] = y[v] = a^4 \\ z[-2] &= y[-2n+2] = y[c] = a^6 \end{aligned}$



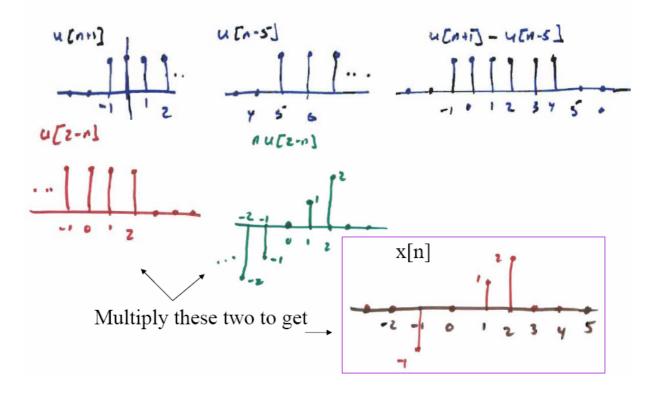
Amplitude Scaling

• Do point by point

Example: Find x[n] = (u[n+1] - u[n-5])(nu[2-n])



Example: Find x[n] = (u[n+1] - u[n-5])(nu[2-n])



Even and Odd Signals

Any discrete-time signal can be expressed as the sum of an **even signal** and an **odd signal**

```
x[n] = x_e[n] + x_o[n]

Even: x_e[n] = x_e[-n]

Odd: x_o[n] = -x_o[-n]

x_e[n] = \frac{1}{2}(x[n] + x[-n])

x_o[n] = \frac{1}{2}(x[n] - x[-n])

x[n] = x_e[n] + x_o[n]
```

Even and Odd Signals

<u>Ex.</u> Given x[n], find $x_e[n]$ and $x_o[n]$.

