
ATmega128 Interrupt

Jee-Hwan Ryu

School of Mechanical Engineering
Korea University of Technology and Education

인터럽트(Interrupt, 가로채기)의 개념

- CPU외부의 하드웨어적인 요구에 의해서 정상적인 프로그램의 실행 순서를 변경하여 보다 시급한 작업을 먼저 수행한 후에 다시 원래의 프로그램으로 복귀하는 것
- 비동기적으로 발생하는 주변장치의 서비스 요청에 CPU가 가장 빠르게 대응 할 수 있는 방법
- 비동기적으로 동작하는 CPU(고속)와 주변장치(저속) 사이에서 효율적으로 일을 수행
- 인터럽트가 발생하면 나중에 돌아올 복귀주소(return address)가 자동적으로 스택에 저장되었다가, 인터럽트 서비스루틴의 마지막에서 복귀 명령을 만나면 다시 자동적으로 복귀주소로 돌아온다.

인터럽트의 종류

- 인터럽트 발생원인에 따른 분류
 - 하드웨어 인터럽트
 - 내부 인터럽트
 - 외부 인터럽트
 - 소프트웨어 인터럽트
- 인터럽트 발생시 마이크로프로세서의 반응 방식에 따른 분류
 - 차단 가능 인터럽트
 - 차단 불가능 인터럽트
- 인터럽트를 요구한 입출력 기기를 확인하는 방법에 따른 분류
 - 벡터형 인터럽트 (vectored interrupt)
 - 조사형 인터럽트 (polled interrupt)

Korea University of Technology and Education

내부 인터럽트

- CPU에 정의되어 있지 않은 명령의 실행
- Zero로 나눗셈을 시도
- 보호된 메모리 영역에 접근 등의 원인에 의해 마이크로프 로세서 내부적으로 발생되는 인터럽트
- ATmega128은 내부 인터럽트가 없다.

외부 인터럽트

- 타이머에서 지정된 시간 경과
- 입력장치에서의 서비스 요구
- 출력장치의 작업종료
- A/D 변환의 완료
- DMA 동작의 종료
- 멀티프로세서간의 통신 요구 등 마이크로프로세서와 독립되어 있는 외부장치에 의해 발생되는 순수한 의미에서의 인터럽트

Korea University of Technology and Education

차단 가능/불가능 인터럽트

- 차단 가능 인터럽트
 - 프로그래머에 의하여 인터럽트 요청을 받아들이지 않고 무시할 수 있는 것
 - 시간제약이 중요한 프로그램 수행 중에는 인터럽트 요청을 허용 하지 않을 수 있다.
- 차단 불가능 인터럽트
 - 프로그래머에 의하여 어떤 방법으로도 인터럽트 요청이 차단될 수 없는 것
 - 전원이상, 비상정지 스위치 등 돌발사태에 대비하기 위한 것

인터럽트 차단 및 허용

- 인터럽트 마스크 레지스터, 인터럽트 허용 레지스터를 사용하여 개별적으로 차단 및 허용 가능
- EIMSK: 개별적 인터럽트의 차단/허용
- SEI: Set Global Interrupt Flag, Global Interrupt Enable
- CLI: Clear Global Interrupt Flag, Global Interrupt Disable

Korea University of Technology and Education

벡터형 인터럽트

- 인터럽트가 발생할 때마다 인터럽트를 요청한 장치가 인 터럽트 서비스 루틴의 시작번지를 CPU에게 전송하거나, 또는 CPU가 각 인터럽트의 종류에 따라 미리 지정된 메 모리 번지에서 인터럽트 벡터를 읽어서 이를 인터럽트 서 비스 루틴의 시작번지로 사용하는 방식
- 인터럽트 시간이 빠르다
- 주변장치의 많고 적음에 영향이 없다.
- ATmega128의 모든 인터럽트는 이 방식

조사(polling)형 인터럽트

- 인터럽트가 발생하면 이 인터럽트를 요청한 장치를 찾기 위하여 CPU가 각 주변장치를 소프트웨어적으로 차례로 조사(polling)하는 방식
- 하드웨어 간단
- 주변장치의 많고 적음에 따라 처리시간이 변함
- ATmega128은 사용하지 않는다.

Korea University of Technology and Education

인터럽트의 우선순위 제어

- 인터럽트 우선순위 제어가 필요한 경우
 - 우연히 2개 이상의 주변장치가 동시에 CPU에게 인터럽트를 요청하는 경우
 - 하나의 인터럽트가 서비스되고 있는 동안에 또 다른 인터럽트가 요청되는 경우
- 벡터형 인터럽트의 경우
 - 인터럽트 우선순위 제어기의 우선순위 레지스터의 초기화로 우선 순위 제어방식 사용
- 조사형 인터럽트의 경우
 - 폴링의 순서에 의하여 소프트웨어적으로 우선순위 선정

ATmega128의 인터럽트

• 34종의 차단가능 외부 인터럽트

Table 23. Reset and Interrupt Vectors

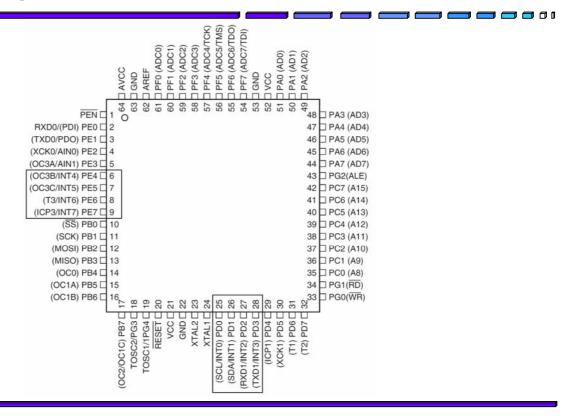
Vector No.	Program Address ⁽²⁾	Source	Interrupt Definition
1	\$0000(1)	RESET	External Pin, Power-on Reset, Brown-out Reset, Watchdog Reset, and JTAG AVR Reset
2	\$0002	INT0	External Interrupt Request 0
3	\$0004	INT1	External Interrupt Request 1
4	\$0006	INT2	External Interrupt Request 2
5	\$0008	INT3	External Interrupt Request 3
6	\$000A	INT4	External Interrupt Request 4
7	\$000C	INT5	External Interrupt Request 5
8	\$000E	INT6	External Interrupt Request 6
9	\$0010	INT7	External Interrupt Request 7
10	\$0012	TIMER2 COMP	Timer/Counter2 Compare Match
11	\$0014	TIMER2 OVF	Timer/Counter2 Overflow
12	\$0016	TIMER1 CAPT	Timer/Counter1 Capture Event
13	\$0018	TIMER1 COMPA	Timer/Counter1 Compare Match A
14	\$001A	TIMER1 COMPB	Timer/Counter1 Compare Match B
15	\$001C	TIMER1 OVF	Timer/Counter1 Overflow

Korea University of Technology and Education

ATmega128의 인터럽트

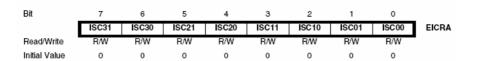
		1	
16	\$001E	TIMER0 COMP	Timer/Counter0 Compare Match
17	\$0020	TIMER0 OVF	Timer/Counter0 Overflow
18	\$0022	SPI, STC	SPI Serial Transfer Complete
19	\$0024	USART0, RX	USART0, Rx Complete
20	\$0026	USART0, UDRE	USART0 Data Register Empty
21	\$0028	USART0, TX	USART0, Tx Complete
22	\$002A	ADC	ADC Conversion Complete
23	\$002C	EE READY	EEPROM Ready
24	\$002E	ANALOG COMP	Analog Comparator
25	\$0030 ⁽³⁾	TIMER1 COMPC	Timer/Countre1 Compare Match C
26	\$0032 ⁽³⁾	TIMER3 CAPT	Timer/Counter3 Capture Event
27	\$0034 ⁽³⁾	TIMER3 COMPA	Timer/Counter3 Compare Match A
28	\$0036 ⁽³⁾	TIMER3 COMPB	Timer/Counter3 Compare Match B
29	\$0038 ⁽³⁾	TIMER3 COMPC	Timer/Counter3 Compare Match C
30	\$003A ⁽³⁾	TIMER3 OVF	Timer/Counter3 Overflow

인터럽트의 동작


- 어느 인터럽트가 요청되어 이것이 허용되면 인터럽트 서비스 루틴이 실행되면서 SREG 레지스터의 글로벌 인터럽트 허용비트 I가 0으로 클리어되어 모든 인터럽트가 금지상태로 된다.
- 인터럽트 서비스 루틴이 실행되는 동안에 다른 인터럽트 가 발생되도록 다중인터럽트를 허용하려면 SREG레지스 터의 I비트를 1로 설정해야 한다.
- ISR을 종료하기 위하여 복귀명령을 실행하면 I가 다시 1 로 되살아나 인터럽트 허용상태로 복귀된다.

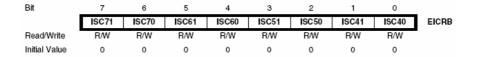
Korea University of Technology and Education

ATmega128의 외부 인터럽트


- 8개의 외부핀 INT7~0을 통해 입력되는 신호에 의하여 발생되는 인터럽트
- 이 핀들을 출력으로 설정하여도 발생 -> 병렬 I/O포트에 소프트웨어적으로 데이터를 출력하여 인터럽트 요구가능
- 트리거 방법
 - EICRA(INT3~0), EICRB(INT7~4) 사용하여 설정
 - Low level, falling edge, rising edge 에 의하여 트리거

ATmega128의 외부 인터럽트 핀

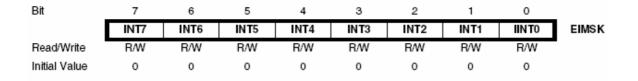
Korea University of Technology and Education


EICRA (External Interrupt Control Register A)

ISCn1	ISCn0	Description
0	0	The low level of INTn generates an interrupt request.
0	1	Reserved
1	0	The falling edge of INTn generates asynchronously an interrupt request.
1	1	The rising edge of INTn generates asynchronously an interrupt request.

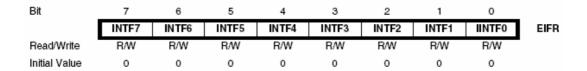
Korea University of Technology and Education

EICRB (External Interrupt Control Register B)


ISCn1	ISCn0	Description
0	0	The low level of INTn generates an interrupt request.
0	1	Any logical change on INTn generates an interrupt request
1	0	The falling edge between two samples of INTn generates an interrupt request.
1	1	The rising edge between two samples of INTn generates an interrupt request.

Note: 1. n = 7, 6, 5 or 4.

Korea University of Technology and Education


EIMSK (External Interrupt Mask Register)

- INT7~0를 개별적으로 허용하는데 사용
- 1:허용, 0:금지
- 개별적으로 허용된 인터럽트는 다시 SREG의 I(글로벌 인 터럽트 허용 비트)가 1로 설정되어야 실제로 허용

EIFR (External Interrupt Flag Register)

- INT7~0핀에 인터럽트 신호가 입력되어 해당인터럽트가 트리거 되었음 표시
- 인터럽트 서비스루틴으로 점프하면 다시 0으로 클리어됨

Korea University of Technology and Education