
Time Domain Passivity Control of Haptic 
Interfaces with Virtual Environments

1. Stability Condition
2. Time Domain Passivity Approach
3. Experimental Results



Haptic Interaction System Overview
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Network Model and Stability Condition
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Passivity 

• Principle of conservation of energy:
– “Energy supplied BY the network can never exceed the 

energy which has been fed TO it”

• Mathematical definitions
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Energy Behavior of Spring 
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Passivity Observer (PO) can measure 
energy flow in real-time

  0nEobsv

  0nEobsv

: Passive

: Active

     



n

k
obsv kvkfTnE

0
 

N

v

f




-Hannaford and Ryu 2001-

    0         ,0
0

 tdvf
t



PO :

Passivity :

 nEobsv



Passivity Controller (PC) is an adaptive 
dissipation element

Series or velocity conserving parallel or force conserving
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Series PC Algorithm
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2)                       
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Simple Simulation with Impedance Type 
Virtual Wall
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Simulation Results



Excalibur Haptic Interface System 



Experimental Video Clip



Contact with High Stiffness without PC 
(k = 90 kN/m)

Contact was unstable
PO was initially positive, but grow to negative value



Contact with High Stiffness with PC

Stable contact was achieved with about 6 bounces
PC begin to operate on the 4th bounce 



Delayed environment without PC 
(66.67 Hz)

One of the most challenging problem
Result was very unstable



Delayed environment with PC

Contact is stabilized within a single bounce
Noisy behavior of PC coincide with a period of low velocity



Stable Teleoperation with Time Domain 
Passivity Control

1. Stability Condition
2. Time Domain Passivity Approach
3. Experimental Results



Network Model and Stability Condition
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Passivity Observer for 2-port network is 
similar 

            

 nWT

EkvkfkvkfTnE
n

k
obsv



 


0 
0

2211

N







1f 2f

1v 2v

PO :



Two PCs are required for 2-port network

• There are two gate ways through which the 
generated energy flows out
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Mathematically there are two ways to 
make the 2-port network passive

• Increasing the absorbed energy
• Decreasing the produced energy
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There are four cases of PC operation

• Energy is absorbed by both ports
– No need to activate any PC

• Energy is produced by one port
– Need to activate only one PC at the active port

• Energy is produced by both ports
– Many strategies are possible
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Real-time Availability Should be 
Checked for Designing PO/PC
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Passivity Observer



Select Type of PC with Causality
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•Physical energy is transferred to a physical system through the
place where an actuator is placed

•Motor has admittance causality      
Bilateral controller has impedance causality



Experimental Video Clip



Hard Contact with Low Velocity

Stable contact can be achieved even the 
Environment has high stiff



Hard Contact with High Velocity and 
without PC

Contact is unstable
PO<0



Hard Contact with High Velocity and 
with PC

Stable contact is achieved with about 7 bounces
Transmitted force is modified by the PC if it is needed



Following the Slanted Hard Wall without 
PC

Contact become unstable during the following
PC become negative



Following the Slanted Hard Wall with 
PC

Following is stable
PC output consists of noise-like signal during low velocity



Contact with Soft Sponge with High 
Velocity without PC

Even contact is stable, PO crosses to negative value
Need to consider external dissipation



Extension of the Time Domain Passivity 
Control to General Motion Control 
Systems

1. Network Modeling
2. Implementation Issues
3. Simulation Results



• Network model with energy flow is required
• The PO/PC is based on energy monitoring

Conventional View of General Control 
Systems
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Generator Controller Physical

SystemPlant

One directional 
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Physical 
Energy flow

Energy Flow ?



Physical Analogy of Motion Control 
Systems
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Generality of the Network 
Representation
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Stability Condition
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• Input energy depend on 
connected network

• Connected network is passive
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• Plant is uncertain 
zero ~ inf.  impedance range

• Controller 2-port should be 
passive



Motion Control of Single-link Flexible 
Manipulator 
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Design PO/PC with Causality
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Meaning of Initial Energy Storage E(0)
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Nominal LQ Regulator without PC

Regulation is unstable



Nominal LQ Regulator with PC

Stable regulation is achieved
During the rise time, PC is only activated several time (E(0)=0.055)



Polytopic Robust LQ regulator

Controller remain passive (E(0)=1.51), the response is very slow
Controller require large amount of control input



Comparison of PC Approach with 
Nominal LQ Controller w/o Perturbation



Nominal LQ Regulator when 
Quantization effect is added

Performance is slightly degraded
Noise PC output during a period of low velocity



Control of Flexible Manipulator with 
Non-collocated Feedback

1. Network Modeling
2. Implementation Issues
3. Simulation Results



Control of Non-minimum Phase System

• Interesting point is tip-position
– Tip-position feedback can increase the control 

performance

• Non-collocated system
– Tip-position output, joint torque input

• Non-minimum phase system
– Small increment of controller gain and system 

parameter perturbation can easily make the closed-loop 
system unstable



PO/PC can not be Applied to an Active 
Plant

• If the plant is active, the overall system may not 
be passive even the controller remains passive
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Change to Suitable Model to PO/PC 
Approach
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Designing the PO/PC
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Tip-position PD Control without PC

Control is unstable
PO<0



Tip-position PD Control with PC

Stable tracking is achieved
PC is activated only it is required


