Time Domain Passivity Control of Haptic Interfaces with Virtual Environments

- 1. Stability Condition
- 2. Time Domain Passivity Approach
- 3. Experimental Results

Haptic Interaction System Overview

Network Model and Stability Condition

Virtual Environment one-port should be passive

$$\int_0^t f_e(\tau) v_e(\tau) d\tau \ge 0, \qquad \forall t \ge 0$$

Passivity

- Principle of conservation of energy:
 - "Energy supplied BY the network can never exceed the energy which has been fed TO it"
- Mathematical definitions

 $\int_0^t f(\tau) v(\tau) d\tau + E(0) \ge 0, \qquad \forall t \ge 0$

Net energy supplied Initial energy storage

Energy Behavior of Spring

Passivity Observer (PO) can measure energy flow in real-time

Passivity :

$$\int_0^t f(\tau) v(\tau) d\tau \ge 0, \qquad \forall t \ge 0$$

PO:
$$E_{obsv}(n) = \Delta T \sum_{k=0}^{n} f(k)v(k)$$

 $E_{obsv}(n) \ge 0$: Passive
 $E_{obsv}(n) < 0$: Active

-Hannaford and Ryu 2001-

Passivity Controller (PC) is an adaptive dissipation element

Series or velocity conserving Impedance causality parallel or force conserving Admittance causality

-Hannaford and Ryu 2001-

Series PC Algorithm

1)
$$v_1(n) = v_2(n)$$
 is an input
2) $f_2(n) = F_N(v_2(n))$
where $F_N()$ is the output of the one-port
3) $E_{obsv}(n) = E_{obsv}(n-1) + [f_2(n)v_2(n) + \alpha(n-1)v_2(n-1)^2]\Delta T$
4) $\alpha(n) = \begin{cases} -E_{obsv}(n)/\Delta T v_2(n)^2 & \text{if } E_{obsv}(n) < 0 \\ 0 & E_{obsv}(n) \ge 0 \end{cases}$
5) $f_1(n) = f_2(n) + \alpha(n) v_2(n) \Rightarrow \text{output}$

$$v_1 \rightarrow v_2 \rightarrow v_1 \rightarrow v_2 \rightarrow v_1 \rightarrow v_2 \rightarrow v_1 \rightarrow v_2 \rightarrow v_2 \rightarrow v_1 \rightarrow v_2 \rightarrow v_2 \rightarrow v_2 \rightarrow v_1 \rightarrow v_2 \rightarrow v_2 \rightarrow v_2 \rightarrow v_1 \rightarrow v_2 \rightarrow v_2 \rightarrow v_2 \rightarrow v_2 \rightarrow v_2 \rightarrow v_1 \rightarrow v_2 \rightarrow v_1 \rightarrow v_2 \rightarrow$$

-Hannaford and Ryu 2001-

Ð

0-

Simple Simulation with Impedance Type Virtual Wall

k = 710 N/mb = 50 Ns/m

Simulation Results

Excalibur Haptic Interface System

Experimental Video Clip

Contact with High Stiffness without PC $(k = 90 \ kN/m)$

Contact was unstablePO was initially positive, but grow to negative value

Contact with High Stiffness with PC

Stable contact was achieved with about 6 bounces
 PC begin to operate on the 4th bounce

Delayed environment without PC (66.67 *Hz*)

One of the most challenging problemResult was very unstable

Delayed environment with PC

Contact is stabilized within a single bounce
 Noisy behavior of PC coincide with a period of low velocity

Stable Teleoperation with Time Domain Passivity Control

- 1. Stability Condition
- 2. Time Domain Passivity Approach
- 3. Experimental Results

Network Model and Stability Condition

Teleoperator two-port should be passive

 $\int_0^t (f_h(\tau) v_m(\tau) + f_e(\tau) v_s(\tau)) d\tau \ge 0, \qquad \forall t \ge 0$

Passivity Observer for 2-port network is similar

PO:
$$E_{obsv}(n) = \Delta T \sum_{k=0}^{n} (f_1(k)v_1(k) + f_2(k)v_2(k)) + E(0)$$

= $\Delta T \cdot W(n)$

Two PCs are required for 2-port network

• There are two gate ways through which the generated energy flows out

Mathematically there are two ways to make the 2-port network passive

- Increasing the absorbed energy
- Decreasing the produced energy

Add PC at each port and decrease the produced energy

There are four cases of PC operation

- Energy is absorbed by both ports
 - No need to activate any PC
- Energy is produced by one port
 - Need to activate only one PC at the active port
- Energy is produced by both ports
 - Many strategies are possible

$$W(n) = W(n-1) + f_1(n)v_1(n) + f_2(n)v_2(n) < 0$$

due to the damping allocation among the 2 ports such that

$$\alpha_1(n)v_1(n)^2 + \alpha_2(n)v_2(n)^2 = -W(n)$$

Real-time Availability Should be Checked for Designing PO/PC

Passivity Observer

$$E_{obsv}(n) = \Delta T \sum_{k=0}^{n} (f_m(k)v_m(k) + f_s(k)v_s(k)) = \Delta T \cdot W(n)$$

Select Type of PC with Causality

•Physical energy is transferred to a physical system through the place where an actuator is placed

•Motor has admittance causality

Bilateral controller has impedance causality

Experimental Video Clip

Hard Contact with Low Velocity

Stable contact can be achieved even the Environment has high stiff

Hard Contact with High Velocity and without PC

Contact is unstablePO<0

Hard Contact with High Velocity and with PC

Stable contact is achieved with about 7 bouncesTransmitted force is modified by the PC if it is needed

Following the Slanted Hard Wall without PC

Contact become unstable during the followingPC become negative

Following the Slanted Hard Wall with PC

Following is stablePC output consists of noise-like signal during low velocity

Contact with Soft Sponge with High Velocity without PC

Even contact is stable, PO crosses to negative valueNeed to consider external dissipation

Extension of the Time Domain Passivity Control to General Motion Control Systems

- 1. Network Modeling
- 2. Implementation Issues
- 3. Simulation Results

Conventional View of General Control Systems

- Network model with energy flow is required
- The PO/PC is based on energy monitoring

Physical Analogy of Motion Control Systems

Network Model of Motion Control Systems

Tracking controller

Generality of the Network Representation

Regulator

Impedance/Admittance Controller

Force controller

Human supervisory controller

Stability Condition

Motion or Impedance/admittance

Force or human supervisory

- Input energy depend on connected network
- Connected network is passive
 marginally passive
- Plant is uncertain zero ~ inf. impedance range
- Controller 2-port should be passive

Motion Control of Single-link Flexible Manipulator

Manipulator model (Kwon and Book, 1994)

-70% end-mass perturbation +50% damping perturbation -30% stiffness perturbation

Design PO/PC with Causality

$$E_{obsv}(n) = \Delta T \sum_{k=0}^{n} (\tau(k)v_d(k) - \tau(k)v(k)) + E(0) = \Delta T \cdot W(n)$$

Meaning of Initial Energy Storage E(0)

e(0) : Initial position error K_p : Proportional gain

$$E(0) = \frac{1}{2} K_p e(0)^2$$

Energy bound of regulation controller

Nominal LQ Regulator without PC

≻Regulation is unstable

Nominal LQ Regulator with PC

Stable regulation is achieved
During the rise time, PC is only activated several time (E(0)=0.055)

Polytopic Robust LQ regulator

Controller remain passive (E(0)=1.51), the response is very slow
Controller require large amount of control input

Comparison of PC Approach with Nominal LQ Controller w/o Perturbation

Nominal LQ Regulator when Quantization effect is added

Performance is slightly degradedNoise PC output during a period of low velocity

Control of Flexible Manipulator with Non-collocated Feedback

- 1. Network Modeling
- 2. Implementation Issues
- 3. Simulation Results

Control of Non-minimum Phase System

- Interesting point is tip-position
 - Tip-position feedback can increase the control performance
- Non-collocated system
 - Tip-position output, joint torque input
- Non-minimum phase system
 - Small increment of controller gain and system parameter perturbation can easily make the closed-loop system unstable

PO/PC can not be Applied to an Active Plant

• If the plant is active, the overall system may not be passive even the controller remains passive

Change to Suitable Model to PO/PC Approach

• Physical energy is transferred to a physical system through the place where an actuator is placed

Designing the PO/PC

• Two Impedance type PCs

Tip-position PD Control without PC

Control is unstablePO<0

Tip-position PD Control with PC

Stable tracking is achievedPC is activated only it is required