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Abstract. A new robust controller design method is proposed to obtain a less conservative feedback
controller and it is applied to a single-link flexible manipulator. The objective is to maximize the
control performance guaranteeing the robust stability when regulating the tip position of the flexible
manipulator in the presence of a large time-varying payload and parameter uncertainties such as
stiffness and joint friction. A descriptor form representation, which allows separate treatment of
payload uncertainty from other parametric uncertainties, is used to reduce the conservatism of the
conventional robust control approaches. Uncertainty of the payload in the inertia matrix is repre-
sented by polytopic approach and the uncertain parameters in the damping and stiffness matrices are
treated with descaling techniques. Using aforementioned techniques, the robust LQ controller design
problem for a flexible manipulator based on the guaranteed cost approach is formulated. Then, the
formulated problem is solved by LMIs.

Key words: descaling technique, descriptor form, flexible manipulator, parameter uncertainty, pay-
load variation, polytopic approach, robust control.

1. Introduction

Ever since the robot manipulators were introduced in the automation industry,
manipulators have been refined to have better energy efficiency, faster operation
and higher payload to arm weight ratio. These technical goals have been achieved
up to a certain level by designing the low inertia and stiff structure. However, the
concept of low inertia and stiff structure is relative to the motion speed and the
control accuracy. As the manipulator motion speed is increased and the higher
positioning accuracy is required, the manipulator cannot be considered as a low
inertia or rigid structure. Therefore, control of a flexible manipulator has received
much attention in the past two decades. Generally, it has been attempted to control
the joint motion as well as a certain number of vibration modes with joint actuators
[3, 5, 9].

The dynamic effect of the payload is much larger in the lightweight flexible
manipulator than in the conventional rigid manipulator. Also, the inaccurate esti-
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mation of the actuating joint friction degrades the vibration mode control. To solve
this problem, some control methods have been presented, usually based on adaptive
control schemes [6, 7]. However, these approaches are restricted to the cases where
the system has fixed parameter uncertainties. To cover the time-varying uncertain
systems, robust control techniques such as sliding mode controls [22] andH∞
controls [1, 24] are introduced to flexible manipulators. However, such robust con-
trol techniques may not yield high performance when a large uncertain payload
exists, because the inversion of the inertia matrix in transformation process from a
dynamic equation to a state-space form results in information loss on the structure
and magnitude of all uncertainties.

Recently, some researchers have reported that a descriptor form is useful for
representation of the uncertain system [10, 11]. The descriptor form can repre-
sent differential equations of a dynamic system more effectively than the state-
space form. Especially, the descriptor form can preserve the independent physical
parameters of the uncertainty structure of the inertia matrix.

This paper proposes a descriptor form based on a robust LQ controller design
method for a flexible manipulator, which has model uncertainties and large payload
variations. The differential equation of a single-link flexible manipulator has been
represented in a descriptor form to separate payload uncertainty from other para-
metric uncertainties. We treated the uncertainty of the payload in the left-hand side
inertia matrix with a polytopic approach and the uncertain parameters in the right-
hand side damping and stiffness matrices with a descaling technique. The polytopic
approach [4] is effective to preserve the uncertainty structure information when the
uncertainty matrices in the model depend affinely on uncertain parameters. The
descaling technique [8, 14, 15, 19 – 21, 23] is a conventional approach in general
robust control strategy, such as scaledH∞ control. By treating the system uncer-
tainties using these two techniques, we can avoid the conservatism in estimating the
bound of uncertainties. The optimal solution is obtained easily and systematically
by using the linear matrix inequality (LMI) method [4].

Furthermore, this design method can be extended to the decentralized controller
design for multi-link manipulators because the effect of external links to an inner

Table I. Physical properties of a single-link flexible manipulator

Link EI: stiffness (Nm2) 11.85 H : thickness (m) 47.63E–4

ρA: unit length 0.2457 L: length 1.1938

mass (kg/m)

Tip Me: mass (kg) 0.5867 Je: rot. inertia (kgm2) 0.2787

mass

Hub Ih: rot. inertia (kgm2) 0.016
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link can be considered as a payload variation, damping and stiffness uncertainty,
and external disturbances.

This paper is organized as follows. A dynamic model of a single-link flexible
manipulator is presented in Section 2. The conventional design methods are intro-
duced in Section 3. Section 4 addresses the proposed approach. The problem is
formulated in Section 5. In Section 6, to evaluate the controller performance, the
proposed control scheme is applied to a single-link flexible manipulator, which has
time-varying payload, joint friction and stiffness uncertainties. Section 7 presents
conclusions and discussions.

2. Dynamic Model

2.1. SINGLE-LINK FLEXIBLE MANIPULATOR MODEL

The flexible manipulator model employed in this manuscript is the one used by
Kwon and Book [2, 17, 18] for their initial experiments on a flexible-link robot. The
single-link flexible manipulator having a planar motion is described as shown in
Figure 1. The rotating inertia of the servomotor, the tachometer, and the clamping
hub are modeled as a single hub inertiaIh. The payload is modeled as an end
massMe and a rotational inertiaJe. The joint friction is included in the damping
matrix. The system parameters in Figure 1 are referred to in Table I.

The closed form dynamic equation is derived to show the system parameter
structure using the assumed mode method. Here, we use the resulting dynamic
equation with generalized coordinates as follows:

[M]q̈ + [D]q̇ + [K]q = [U ]τ, q =

qi
...

qn

 for i, j = 0,1, . . . , n, (1)

[M] =
[
Mij . . .
...

. . .

]
,

Figure 1. A single-link flexible manipulator.
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Mij = ρA
∫ l

0
8i(x)8j (x)dx + Ihφ′i (0)8′j (0)+Me8i(l)8j(l)+ Je8′i(l)8′j (l),

[D] = c0

[
8′i(0)8

′
j (0) . . .

...
. . .

]
, [U ] =

[
8′i(0)
...

]
,

[K] =
 0 0 . . .

0 Kij . . .
...

...
. . .

 , Kij = EI
∫ l

0
8′′i (x)8

′′
j (x)dx,

where8i,j (·) is a mode function,EI – stiffness of link,ρA – unit length mass of
link, L – length of link,Me – tip mass,Je – tip rotational inertia, andIh – rotational
inertia of Hub.

For a state-space form, we obtain the following dynamic equation:

Ẋ =
[

0 I

−M−1K −M−1D

]
X +

[
0

M−1U

]
τ = AX + Bτ, (2)

whereX = {qr qf q̇r q̇f }T = {q0 q1 . . . q̇0 q̇1 . . .}T, qr = q0 (rigid body
coordinate),

qf =

q1
...

qn

 (flexible mode coordinate).

2.2. STRUCTURED UNCERTAINTY

If we assume that the tip-mass, tip rotational inertia, damping and bending stiff-
ness have perturbations, the nominal system Equation (1) becomes an uncertain
dynamic system as follows:[

M0+1M(t)
]
q̈ + [D0+1D(t)

]
q̇ + [K0+1K(t)

]
q = [U0

]
τ, (3)

whereM0,D0,K0, andU0 mean the nominal value,

[1M] =
[
1Mij . . .
...

. . .

]
,

1Mij = 1Me8i(l)8j(l)+1Je8′i(l)8′j (l),

[1D] =
[
1Dij . . .
...

. . .

]
, 1Dij = 1c08

′
i(0)8

′
j (0),

[1K] =
0 0 . . .

0 1Kij . . .
...

...
. . .

 , 1Kij = 1EI
∫ l

0
8′′i (x)8

′′
j (x)dx.
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Here1Me,1Je,1c0, and1EI mean perturbation of each parameter. Although
these are scalar perturbations, the system has structured uncertainties as a multipli-
cation of the mode function.

3. Conventional Design Methods

Until now, there have been numerous researches about a robust controller design
method using a given structure information of uncertainties. Basically, there have
been two main streams: one is the descaling technique [8, 14, 15, 19 – 21, 23] and
the other is the polytopic approach [4]. In this section, these two approaches are
explained briefly.

For a clear example, a simple class of uncertain systems is introduced

ẋ = A1x =
(
A0 +1A(t)

)
x, (4)

z = Cx. (5)

If the uncertainty matrix1A(t) depends affinely on the time varying parame-
tersδi(t), i = 1, . . . , r, then the uncertainty in the system (4) can be expressed
(without any loss of generality) as follows:

1A(t) =
r∑
i=1

δi(t)Ai = MA1
A(t)NA. (6)

The matrixAi has a given uncertainty structure, and matricesMA andNA are used
to describe the structure of uncertainty.

3.1. DESCALING TECHNIQUE

Descaling technique can be described by

1A(t) = MA1
A(t)NA = MA01

A(t)0−1NA. (7)

The uncertainty1A(t) can be decomposed intoMA1
A(t)NA by using an input/out-

put decomposition method, and design conservatism can be reduced using descal-
ing matrix0 [13, 14, 16, 20].

The descaling technique is the most popular approach in the robust control
theory. And, it usually has been used in scaledH∞-control theory. Using this ap-
proach, a tightly bounded stability condition can be obtained as a single constraint
(such as a nonstandard algebraic Riccati equation [13, 14, 16, 20]). However, this
approach becomes very conservative, when there exist uncertainties in an inertia
term, because the inversion of an inertia matrix is inevitable when applying this
technique.

For this reason, recently a polytopic approach has focused on the robust con-
troller design.
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3.2. POLYTOPIC APPROACH

Recall the simple uncertain system described by (4)–(6).
If the uncertainty matrix1A(t) is polytopic, i.e., it depends affinely on the time

varying parametersδi(t), i = 1, . . . , r, then the uncertain system can be expanded
as a combination of the vertices in the variation range of uncertainty as follows:

A0+1A(t) ∈ {α1A1+ · · · + αrAr : αi > 0, α1+ · · · + αr = 1}.
If each system, whose system matrix isAi, the vertex of the parameter variation
range is stable, then the whole system that is represented byA1 in this set is
stable. It means that it is sufficient to check the stability only on each vertex in
order to show the stability of the time-varying system. This approach is effective in
modeling the uncertainties when the uncertainties enter in the model affinely. This
approach gives the same solution as the scaledH∞-problem when the system has
no inertia uncertainty. However, since it needs as many constraints as vertices, the
more uncertain parameters give the longer computation time.

In the remainder of this section, a polytopic approach is explained in quadratic
stability sense to facilitate the later expansion of the main theorem and the prob-
lem formulation. For simplicity, we shall also assume that the uncertainty matrix
1A(t) ∈ 3A is time-varying and the set3A can be described as

3A = {block_diag
[
δ1(t)Iq1 . . . δr(t)Iqr

]
: δi 6 δi(t) 6 δi

}
,

whereblock_diagmeans a block diagonal matrix,δi andδi mean the minimum and
maximum bounds of uncertainty variation range, respectively. For future reference,
we shall denote the vertex set of3A

vex with the extreme values as

3A
vex =

{
block_diag

[
δ1(t)Iq1 . . . δr(t)Iqr

]
: δi(t) = δi or δi(t) = δi

}
.

We can notice that there are 2r vertices in3A
vex.

The following lemma shows the usefulness of a polytopic approach when prov-
ing a quadratic stability of a time-varying system. This lemma is equivalent to
Theorem 6 of [25], that is to a polytopic approach in quadratic stability sense.

LEMMA 1. If an uncertain system is described by Equations(3) and(4), and the
uncertainty matrix1A(t) is polytopic, the following two statements are equivalent:
(i) There exists a symmetric matrixP > 0, such that

AT
1P + PA1 + CTC < 0 for all 1A(t) ∈ 3A.

(ii) There exists a symmetric matrixP > 0, such that

AT
1P + PA1 + CTC < 0 for all 1A(t) ∈ 3A

vex.

Proof. The proof for (i)⇒ (ii) is trivial since3A
vex ⊂ 3A. To show (ii)⇒ (i),

defineQ1 ≡ AT
1P + PA1 +CTC. SinceQ1 depend affinely on1A(t), it is easy

to see by convexity that

max
1∈3

λmax(Q1) = max
1∈3vex

λmax(Q1).
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This implies thatQ1 < 0, ∀1A ∈ 3A if and only ifQ1 < 0, ∀1A ∈ 3A
vex. 2

Using the polytopic approach, we can replace a stability constraint that should
be satisfied in all parameter variation areas by another stability constraint that
should be only satisfied in the vertices of the parameter variation area.

4. Proposed Approach

Two conventional robust controller design techniques, mentioned in Section 3, have
both merit and demerit. This section explains the key idea of this paper to take only
merits from these two techniques.

4.1. DESCRIPTOR-FORM REPRESENTATION

A descriptor-form representation makes it possible to use the two approaches si-
multaneously. The descriptor-form is as follows:

Eẋ = Fx +Hu, (8)

where the matrixE contains the information of an inertia.
This form represents a system more intuitively (in contrast with a state-space

form), and preserves independent physical parameter information, especially, for
uncertain structure information on the inertia matrix.

In this approach, since a given uncertain dynamic equation is expressed in a
descriptor-form, inertia uncertainties and other system uncertainties can be treated
separately.

4.2. COMBINED APPROACH

If a general uncertain dynamic system is given, a descriptor-form of the general
uncertain dynamic system is as follows:

(E0+1E)ẋ
Polytopic

= (F0+1F)x + (H0+1H)u
Descaling technique

, (9)

whereE0, F0, andH0 are nominal matrices and each1 term means a structured
uncertainty. If1E is considered to be polytopic, it is always possible to find a
polytopic model as follows:

E0+1E ∈ {α1E1 + · · · + αrEr : αi > 0, α1+ · · · + αr = 1}.
We treat the left side matrix of Equation (9) (that describes inertia terms) in

a polytopic approach, and manipulate these right side matrices (that are related
to other dynamic terms) in a descaling technique. By using these two approaches
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simultaneously and avoiding the inversion of the inertia matrix, the bound of per-
turbation can be tightly obtained. The more detailed procedure will be expanded in
the next section.

5. Problem Formulation

This section addresses a new robust LQ controller design scheme for a general
uncertain system, which has a time-varying payload and parameter uncertainties
in inertia, damping, stiffness and input matrices. Generally, the uncertain dynamic
equation of a flexible manipulator can be described as follows:

(M0+1M)q̈ + (D0+1D)q̇ + (K0+1K)q = (U0+1U)u, (10)

where

1M =
qM∑
i=1

δi(t)Mi, 1D =
qD∑
j=1

δj (t)Dj ,

1K =
qK∑
k=1

δk(t)Kk, and 1U =
qU∑
l=1

δl(t)Ul.

The real numbersδi, δj , δk, andδl are uncertain and time-varying, and, without
loss of generality, satisfy|δi| 6 1, |δj | 6 1, |δk| 6 1, and|δl| 6 1. The matrices
Mi,Dj ,Kk andUl represent uncertainty structures.

The following Equation (11) is a descriptor-form of the uncertain dynamic
equation (10) that maintains the uncertainty structure of the inertia matrix:

E1ẋ = (F0+1F)x + (H0+1H)u, (11)

z = Cx +Du, (12)

wherex = [q q̇]T ∈ Rn is the state vector,u ∈ Rm is the control input vector,z is
the controlled output vector andC,D are weights of state and input, respectively.

E1 = E0+1E, E0 =
[
I 0
0 M0

]
, 1E =

[
0 0
0 1M

]
,

F0 =
[

0 I

−K0 −D0

]
, H0 =

[
0
U0

]
,

1F =
[

0 0
−1K −1D

]
, 1H =

[
0
1U

]
.

Normally, the matrixE1 in the descriptor form (11) is assumed to be nonsin-
gular and uncertainty matrix1M is polytopic. We can also define the compact
set3E, vertex set3E

vex and1E in (6), for uncertainty matrix1E.
The state-space form of (11) is as follows:

ẋ = (E−1
1 F0+ E−1

1 1F
)
x + (E−1

1 H0+ E−1
1 1H

)
u. (13)



A ROBUST CONTROLLER DESIGN FOR A FLEXIBLE MANIPULATOR 353

The LQ quadratic performance index is defined asJLQ ≡ E[
∫∞

0 zTzdt], where
z is a controlled output, which was defined in (12).

The design objective of this problem is to find the full-state feedback con-
troller u = −Gx, which stabilizes the uncertain system (13) and minimizes the
time domain LQ performance indexJLQ. However, it is impossible to minimize
directly the performance indexJLQ stabilizing the time-varying system (13). Thus,
a guaranteed cost control approach [14], which minimizes the upper bound of the
performance indices, is applied.

If there exists a Lyapunov functionV (x) = xTPx that satisfies the inequality

dV (x)

dt
+ zTz < 0 (14)

for ∀1E ∈ 3E, then the system (13) is quadratically stable and the quadratic per-
formance index is bounded bytrace[PX(0)], whereX(0) = E[x(0) x(0)T]. This
performance bounding result can be obtained easily by integrating Equation (14).
If (14) is expanded using (13) andu = −Gx, the following quadratic stability
constraint is obtained:(

E−1
1 (F0 −H0G)

)T
P + PE−1

1 (F0−H0G)+ (C −DG)T(C −DG)+
+ (E−1

1 1F
)T
P + PE−1

1 1F −
(
E−1
1 1HG

)T
P − PE−1

1 1HG < 0

for ∀1E ∈ 3E. (15)

Now, the design problem becomes an optimization problem that minimizes the
upper bound of the performance indices,trace[PX(0)], subject to the inequality
constraint (15). However, it is difficult to find the controller gainG, satisfying
condition (15), because this constraint is nonlinear and time-varying. Moreover,
since the inversion of the uncertain inertia matrix loses the structure and mag-
nitude information of all uncertainties, this constraint becomes very conserva-
tive.

From now on, we transform this complex inequality constraint into a linear
matrix form to solve this optimization problem by LMI. If the optimization prob-
lems can be transformed into LMI problems, then the convex global optimization
is guaranteed by efficient search algorithms such as interior-point method and el-
lipsoid algorithm [4]. In this transformation process, a tightly bounded stability
constraint can be obtained by avoiding the inversion of the uncertain inertia ma-
trix. The uncertainties of the system and input matrices can be changed via I/O
factorization technique [16] as follows:

E−1
1 1F =

(
E−1
1 MF0F

)
1F
(
0−1
F NF

)
,

E−1
1 1H =

(
E−1
1 MH0H

)
1H

(
0−1
H NH

)
.

(16)

Sequentially, by multiplying symmetric matricesP−1 andE1 to both sides of (15),
the quadratic stability constraint (15) is transformed as follows:
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E1P
−1F T

0 + F0P
−1ET

1 − E1P−1GTH T
0 −H0GP

−1ET
1+

+E1P−1(CZ −DG)T(CZ −DG)P−1ET
1 +

(
MF0F1

F0−1
F NFP

−1E1
)T+

+MF0F1
F0−1

F NFP
−1E1 −

(
MH0H1

H0−1
H NHGP

−1E1
)T−

−MH0H1
H0−1

H NHGP
−1E1 < 0 for ∀1E ∈ 3E. (17)

SubstitutingP−1 = Z, GP−1 = Y , we see that constraint (17) is transformed
equivalently as follows:

E1ZF
T
0 + F0ZE

T
1 − E1Y TH T

0 −H0YE
T
1+

+E1(CZ −DY)T(CZ −DY)ET
1+

+ (MF0F1
F0−1

F NFZE1
)T +MF0F1

F0−1
F NFZE1−

− (MH0H1
H0−1

H NHYE1
)T −MH0H1

H0−1
H NHYE1 < 0

for ∀1E ∈ 3E. (18)

Applying an uncertainty bounding technique [16, 25] and using the scaling
matrices, we get

XF ∈ SXF
( ≡ {0F0T

F | 0F ∈ S0F
})

and

XH ∈ SXH
( ≡ {0H0T

H | 0H ∈ S0H
});

the quadratic stability criteria (18) is bounded as

E1ZF
T
0 + F0ZE

T
1 − E1Y TH T

0 −H0YE
T
1 +MFXFM

T
F +MHXHM

T
H+

+E1(CZ −DY)T(CZ −DY)ET
1 + ET

1ZN
T
FX
−1
F NFZE1+

+ET
1Y

TNT
HX
−1
H NHYE1 < 0 for ∀1E ∈ 3E. (19)

Using the Schur complement [4], the matrix inequality constraint is obtained as
follows:


E1ZF

T
0 + F0ZE

T
1−−E1Y TH T

0 −H0YE
T
1++MFXFM

T
F++MHXHM

T
H

 E1(CZ −DY)T E1ZN
T
F E1Y

TNT
H

(CZ −DY)ET
1 −I

NFZE
T
1 −XF

NHYE
T
1 −XH


< 0

for ∀1E ∈ 3E. (20)

Because the above constraint should be satisfied∀1E ∈ 3E, that is, for all
variation ranges ofE1, it is difficult to find the design variablesZ, Y,XH , andXF
which satisfy the matrix inequality constraint (20). However, we can find that con-
straint (20) is affine forE1. Since1E appears to be affine in the above constraint,
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inequality constraint (20) is valid in the range of∀1E ∈ 3E
vex by Lemma 1:


E1ZF

T
0 + F0ZE

T
1−−E1Y TH T

0 −H0YE
T
1++MFXFM

T
F++MHXHM

T
H

 E1(CZ −DY)T E1ZN
T
F E1Y

TNT
H

(CZ −DY)ET
1 −I

NFZE
T
1 −XF

NHYE
T
1 −XH


< 0

for ∀1E ∈ 3E
vex. (21)

Thus, we say that uncertain system (13) is quadratically stable if we can find sym-
metric matricesZ > 0,XF > 0,XH > 0 and properly dimensionedY that satisfies
matrix inequality condition (21) only for all vertices in3E

vex, simultaneously. The
full state feedback controller is taken asG = YZ−1.

Note that the equality constraintZ = P−1 is used in transformation (18). How-
ever, this equality constraint is nonconvex. Thus, the equality constraintZ = P−1

should be replaced by a convex inequality constraint [7]

Z − P−1 > 0 or
[
Z I

I P

]
> 0. (22)

In this section, we have shown that the design problem of the robust LQ regu-
lator can be reduced to an optimization problem searching for the matricesZ > 0,
XF > 0, XH > 0 and properly dimensionedY minimizing trace[PX(0)] while
satisfying the linear matrix inequality constraints (21) and (22). Since these matrix
inequalities are convex inZ, XF ,XH , andY , the convex programming techniques
can be used to findZ, XF , XH andY .

6. Numerical Simulation

In the previous Section 5, the robust LQ controller design method was described for
a general uncertain system. In this section, the robust LQ regulator is designed and
the performance of the controller is verified for the single-link flexible manipulator
that was used in [17]. We consider the case where an additional mass is attached to
the end of the link. Also, the joint friction coefficient and the stiffness of the link
are assumed to have parameter variations.

In Section 2, we described the nominal model and parameter uncertainties of
the single-link flexible manipulator. These uncertainties in Equation (3) can be
normalized as follows:

1Mij = δ1(t)
(

max(1Me)8i(l)8j(l)+max(1Je)8
′
i (l)8

′
j (l)

)
, (23)

1Dij = δ2(t)max(1c0)8
′
i (0)8

′
j (0), (24)

1Kij = δ3(t)max(1EI)
∫ l

0
8′′i (x)8

′′
j (x)dx, (25)
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where|δ1(t)| 6 1, |δ2(t)| 6 1, |δ3(t)| 6 1.
Notice that1Me and1Je are dependent to each other. Thus, these are assumed

to be expressed as one parameter uncertaintyδ1(t). We can also say that the un-
certainty matrices1M, 1D, and1K are polytopic, i.e., they depend affinely
on the time-varying parametersδ1(t), δ2(t), andδ3(t), respectively.δ1, δ2, andδ3

represent normalized variations of inertia, damping and stiffness uncertainty, re-
spectively.

The tip mass and the tip rotational inertia are assumed to have a variation
of ±40% from the nominal values during operation, and the damping and stiff-
ness matrix of the link have fixed perturbation within±50% and±30% from the
nominal values, respectively. For the system dynamic model, the flexible mode is
modeled up to the third mode, that is, the 8th order system is considered.

In order to compare the performance, the proposed robust LQ regulator, con-
ventional robust LQ regulator, and nominal LQ regulator have been designed with
the same weighting function of the performance index (12), using the following
matrices:

C = diag[5 0 0 0 0 0.1 0 0],
D = [0 0 0 0

√
0.1 0 0 0

]T
.

To understand the effect of uncertainties of the system, the closed-loop poles
have been traced while the tip mass and the tip rotational inertia varies±40% from
the nominal values with the actual damping and stiffness matrix of the link that
have fixed perturbation of+50% and−30% from the nominal values, respectively.
Figure 2(a)–(c) show the closed-loop system poles of the nominal LQ regulator,
conventional robust LQ regulator and proposed robust LQ regulator, respectively.
For the given weighting matricesC andD, a nominal LQ regulator is designed
to locate its poles near the imaginary axis. As a result, its closed-loop poles cross
to the RHP for some parameter perturbations. On the other hand, since the con-
ventional robust LQ regulator and the proposed LQ regulator is designed taking
into account the parameter perturbations, the closed-loop poles of these robust
controllers remain stable for the same parameter perturbations. The closed-loop
poles of the conventional robust LQ regulator are located further to the left than the
ones of the proposed robust LQ regulator. It is clear that the conventional robust LQ
regulator is designed more conservatively than the proposed controller. Moreover,
the range of the pole loci of the proposed robust LQ regulator is smaller that that
of the conventional robust LQ regulator for the end-mass perturbation. That means
that the proposed LQ regulator is more insensitive to the parameter variations.

In order to show the performance improvement of the proposed robust LQ
regulator, the regulation problem has been simulated with the proposed controller
and the conventional controller. Figure 3 compares the Hub angle, the tip position
and the control input of these two controllers for the following system parameter
uncertainties. We considered the system with−50% stiffness and+30% damping
perturbation, and the tip mass and the tip rotational inertia having a sinusoidal
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Figure 2. Location of poles for the end-mass variation (Closed-loop system).
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Figure 3. Comparison of control performance.
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Figure 4. Comparison of performance for the end-mass perturbation.

change of±40% (δ1 = ±1) from the nominal values. The proposed controller
shows better performance than the conventional robust LQ controller. Moreover,
the proposed robust LQ controller demands less control input than the conventional
robust LQ controller, especially in the initial stage. The initial control effort of each
controller is−8.8235 Nm (proposed controller) and−62.777 Nm (conventional
controller). Figure 3(c) shows the zoom view of the control input. To compare the
control efforts more precisely, the integral measure of the control input is brought
as Im= ∫ t

0 |u|dt . The proposed controller and the conventional robust LQ con-
troller’s integral measure is 0.1553 and 0.6674, respectively. The result shows that
the conventional robust LQ regulator is conservatively over-designed.

The performance indicesJLQ of each controller are shown for the end-mass
perturbation in Figure 4. The proposed controller and the conventional robust LQ
regulator, which are used in simulation, are designed to be stable for the same
amount of parameter perturbation. Even though these two controllers remain stable,
the performance of the proposed robust LQ regulator is improved in comparison
with the conventional Robust LQ regulator. The nominal LQ regulator shows the
best performance for the system without any end-mass perturbation. However, it
cannot guarantee stability for the large amount of end-mass perturbation.

Notice that the end-mass perturbation limits where the conventional robust LQ
regulator guarantees stability are±40% from the nominal value in the presence
of +50% damping and−30% stiffness perturbation. On the other hand, the pro-
posed regulator extends this amount of the end-mass perturbation to±80% from
the nominal value. Thus, the proposed controller can stabilize the wider range of
parameter perturbation due to the conservatism of the controller design scheme.
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If we consider the multi-link case, the dynamic equation of any link can be
expressed by adding the dynamic effects of the outer and the inner links with
the additive of structured uncertainties and unstructured disturbance. These struc-
tured uncertainties, which depend on configuration changes of other links, exist on
inertia, damping and stiffness terms, simultaneously. The disturbance represents
interaction, centrifugal, coriolis and gravity forces. Since the proposed controller
is effective for the structured uncertain system with inertia, damping, stiffness and
input perturbation, it is expected that the proposed robust LQ controller design
method can be applied to the decentralized controller design for multi-link flexible
manipulators.

7. Conclusions

A new design method for the robust LQ regulator is proposed. It is based on the
descriptor form for the control of a single-link flexible manipulator, which has a
large uncertain payload variation and structured system parameter uncertainties.
By using the descriptor form representation, the inversion of the inertia matrix
is avoided. Thus, tightly bounded stability constraint is obtained by maintaining
the inertia matrix uncertainty structure. We have designed a less conservative ro-
bust controller than the conventional controller that is designed by using only
the descaling technique, by applying the descaling technique and the polytopic
approach simultaneously. Also, the proposed design method is more practical than
the design method which uses only polytopic approach, because a number of design
constraints are reduced. The controller design problem is formulated as a convex
programming problem and is easily solved using LMIs. As a result, the controller
designed with the proposed method shows the improved robust performance and
the reduced conservatism.
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