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Abstract : This paper introduced a new design method of Robust LQ regulator, which avoids the inversion of an inertia matrix allowing to use the full-
structure information of structured time-varying parameter uncertainties. 
 The differential equation of system is expressed as a descriptor form to reserve the structure information of parameter uncertainties. Left-hand side 
matrix that has the uncertain parameters of inertia matrix is assumed to be Polytopic, and right-hand side matrices that include other uncertain parameters 
are treated as scaled small gain techniques such as µ -Synthesis.  

 For stability, the notion of quadratic stability, using a single Lyapunov function, is used. A set of conditions, under which the problem becomes convex, 
can be solved through finite-dimensional convex programming. 
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I. INTRODUCTION 
 
 Design methods of a robust controller for uncertain systems using 
the given structure information have been given much attention recently. 
Many results have been obtained on norm-bounded uncertainty and the 
related problem of scaled ∞H  control [1]-[9]. In scaled ∞H control, 

scaled small gain technique was used to use the given full structure 
information of uncertainties and reduce the conservatism. However, the 
bound of the uncertainties is unclear because a state space equation 
( )C,B,A  with parameter perturbations is obtained through the inversion 

of the inertia matrix. If the inertia matrix has some uncertainty, 
conservative estimation of the bound of perturbations is inevitable owing 
to the matrix inversion. This causes the robust stabilizing controller to be 
too conservative [11].  
 In [8],[9], it is showed that the polytopic approach is effective to 
model the uncertainty, when the uncertainty enters in the model affinely. 
The search for the full state feedback law is equivalent to finding two 
matrices that satisfy a linear matrix inequality (LMI) at the vertices of the 
uncertainty polytope. We can obtain same solution to scaled ∞H problem 
by applying a convex search for which efficient numerical methods are 
available [10]. However, polytopic approach needs as many LMI 
constraints as the number of the vertices of the uncertainty polytope. Thus, 
if the number of uncertain parameter increase, finding the increased 
vertices of the uncertainty polytope is very difficult and many constraints 
increase computation time. Thus, this is not a systematic approach, in this 
case.   
 In order to deal with the parameter uncertainties independently, µ -

synthesis based on the descriptor form representation has been suggested 
in [11]. The descriptor form can represent differential equations of a 
system more naturally than the state-space form. In particular, for 
mechanical systems, independent physical parameters are preserved in the 
descriptor form. Especially, uncertainty structure on inertia matrix. 
Therefore, it is better to use the descriptor form as a representation of 
parameter uncertainty [11],[12].  
 To design the less conservative controller, a new method, that is 
using the Scaled ∞H  and polytopic approach, simultaneously is 

proposed. Represent differential equations of a system as a descriptor 
form and treat the left-hand side matrix which including the uncertainties 
of inertia term as a Polytopic and other right-hand side uncertain matrices 
as a scaled small gain technique. We can escape the conservatism, which 
arise at the inversion of inertia matrix. Therefore, it is possible to obtain a 
tight estimation of the bound of perturbations. Also, we can obtain the 
solution more easily and systematically using LMI. 
 This paper is organized as follows: the scaled ∞H  and polytopic 

approach is introduced in section II. Section III drives the main result that 
is minimization of the time domain performance index of LQ regulator 
with quadratic stability criteria. To evaluate the controller performance, 
the proposed control scheme is applied to the control of a single link 
flexible manipulator, which has time-varying structured parameter 
uncertainties in inertia matrix in section IV. Section V presents 
conclusions and further works.   
 
 

II. PRELIMINARIES 
 
 First, polytopic approach and scaled small gain technique will be 
reviewed focusing on simple class of uncertain systems. 
  ( )( )xtAAxAx ∆∆ +== 0
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  Cxz =  (2) 

The uncertainty matrix ( )tA∆  is assumed to be polytopic, i.e., they 

depend linearly or affinely on the time varying parameters ( )tiδ , 

r,,i �1= .  Then, the uncertainty in the system (1) can be expressed as 
follows, without loss of generality. 
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The matrix iA  has a given uncertainty structure, and matrices AM  and 

AN  are used to describe the structure of uncertainty. For simplicity, we 

shall also assume that the uncertainty matrix ( ) Λ∆ ∈t  is real time-

varying and 
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For future reference, we shall denote the vertex set of Λ  with the 
extreme values: 
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It is easy to see that there are r2 vertices in vexΛ . 

Lemma 1: The system described with equation (1) and (2) is quadratically 
stable if there exists a symmetric matrix 0>P  such that 
 

  0<++ CCPAPA TT
∆∆  (4) 



for all ( ) Λ∆ ∈t .  

 
The above lemma is straightforward. The following lemma is polytopic 
approach in quadratic stability sense. This lemma is equivalent to the 
theorem 6 of [8]. 
 
Lemma 2: Consider the uncertain system described by equation (1) and 
(2). Then the following statements are equivalent: 
 
i. There exists a symmetric matrix 0>P  such that 

  0<++ CCPAPA TT
∆∆   

for all ( ) Λ∆ ∈t .  

 
ii. There exists a symmetric matrix 0>P  such that 

  0<++ CCPAPA TT
∆∆   

for all ( ) vext Λ∆ ∈ . 

 
Proof. The proof for i ⇒  ii is trivial since ΛΛ ⊂vex . To show ii ⇒  

i, define CCPAPAQ TT ++≡ ∆∆∆ . Since ( )t∆  appears affinely in ∆Q , 
it is easy to see by convexity that 
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We shall also assume that the uncertainty is normalized so that 

1=−=
ii δδ , i.e. 1≤∆ . Factorization in (3) is not unique because of 

the existence of scaling matrices defined by the set 
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Note ( ) ( )tt AA ∆Γ∆Γ =−1  for any 
A

SA ΓΓ ∈ . By means of the set 
A

SΓ , 

we can represent all the possible I/O factorization of a given uncertainty 
as follows [13]: 
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Lemma 3: By scaled small gain criteria, the conditions in lemma 2 are 
true if and only if there is a symmetric matrices 0>P  and 
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Proof. To do that, we note that for any 
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SA ΓΓ ∈ , we have 
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for all ( ) Λ∆ ∈t . Using iequalities (7) and (8), we have immediately 
 

  0<++ CCPAPA TT
∆∆ ,  ( ) Λ∆ ∈∀ t . � 

 
 

III.  MAIN RESULTS 
 Inevitably, system models have fixed or time-varying parameter 
uncertainties in stiffness, damping, input and inertia matrix by modeling 
error. Generally, the dynamic equation of time-varying parameter 
uncertain systems can be modeled as follows: 
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δ∆ . The real number lkji  , , , δδδδ  are uncertain, time-

varying and without loss of generality, satisfy 1≤iδ , 1≤jδ , 

1≤kδ , 1≤lδ . The matrixes iM , jD , kK , lG  are given 

uncertain structure. Descriptor-form of uncertain dynamic equation (9) is 
as follows: 
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where [ ] nTqqx ℜ∈= �  is the state vector, mu ℜ∈  is the control input 

vector, z  is the controlled output vector. 
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 Normally, the matrix ∆E  in the descriptor form (10) is assumed to 

be non-singular and uncertainty matrix M∆  is polytopic. We can also 

define the compact set EΛ , vertex set vex
EΛ  and M∆ in (3), for 

uncertain matrix M∆ .  
 The state-space form of (10) is as follows: 
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 The LQ quadratic performance index is defined as 
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in (11).  
 
Theorem 1: The uncertain system described by equation (12) is 
quadratically stablizable using full state feedback Gxu −= . If there exist 

symmetric matrices 0>Z , 0>AX , 0>BX  and proper dimensioned 

Y  satisfying the following matrix inequality constraint. Moreover, the 
performance index is bounded by ( )[ ]0PXtr   
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for all vex
MM Λ∆ ∈  
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Proof. If there exist Lyapunov function ( ) PxxxV T=  and satisfy the 
followings 
   

  
( )

0<+ zz
dt

xdV T   (14) 

for MM Λ∆ ∈∀ , then the system (12) is quadratically stable and the 
quadratic performance index is bounded by ( )[ ]0PXtr , after some 

manipulation. Where ( ) ( ) ( )[ ]TxxEX 000 = [10]. If we expand (14) using 

(12) and Gxu −= , then we can obtain the following quadratic stability 
constraint 
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for all MM Λ∆ ∈ . 
   (15) 
We deal with the uncertainties of system and input matrices via I/O 
factorization technique (6) as follows: 
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Sequentially, multiply 1−P and iE  to the both side of (15), 

Substitute ZP =−1 , YGP =−1 and apply uncertainty bounding 
technique (8) . Finally, quadratic stability criteria can be transformed 
LMI constraints as follows: 
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Since, M∆  appears affinely in the above constraint. Thus, the inequality 
constraint (17) is equivalent the followings, by lemma 2.  
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   (18) 
Thus we can say that the uncertain system (12) is quadratically stable, if 
we can find symmetric matrices 0>Z , 0>AX , 0>BX  and proper 

dimensioned Y  such that satisfies matrix inequality condition (18) for 

all vertices in vex
MΛ , simultaneously. Moreover, the full state feedback 

controller can be taken as 1−=YZG . 
   � 
 

Note that, to explain the equality condition 1−= PZ , inequality 
condition  
 

  01 >− −PZ  or 0>⎥
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⎤
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should be added. 
 This theorem shows that the design problem of robust LQ regulator 
can be reduced to searching for the matrices 0>Z , 0>AX , 0>BX  

and proper dimensioned Y  minimizing ( )[ ]0PXtr  with satisfying the 
linear matrix inequality constraints (18), (19). This matrix inequalities are 
convex in Z , AX , BX  and Y , thus convex programming 

techniques can be used to solve for Z , AX , BX  and Y .   

 
 

IV. NUMERICAL EXAMPLE 
 We consider the following example, which is based on the model for 
a single-link flexible manipulator. It’s dynamic equation which is driven 
by continuous model is described as follows [14]: 
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Where ( )⋅j,iΦ : Mode function, EI : stiffness of link, Aρ : unit length 

mass of link, L : length of link eM : Tip mass, eJ : Tip rot. inertia and 

hI : rot. inertia of Hub. Refer to [15], for more detail. 

 
 If we assume that, tip mass and Tip rot. inertia have 50% time-
varying parameter uncertainty and stiffness of link can have 30% 
parameter variation, we can extract structured time varying parameter 
uncertainties. 
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 Notice that, eM∆ and eJ∆ are dependent uncertainties, thus, we 

can treat these as one parameter uncertainty ( )t1δ . These uncertainties 

can be normalized so that ( ) 11 ≤tδ , ( ) 12 ≤tδ . 

 In this example, we consider to third flexible mode, that is, 4th order 
system is considered. By using the proposed design method, we can 
obtain the robust LQ regulator. This can be obtained by solving multi-
constrained convex optimization problem. 
 To evaluate the robust performance of the controller, simulation 
results of proposed controller with fixed and time-varying parameter 
uncertainties are presented in Fig. 1 and Fig. 2. These figures show that 
the closed-loop system can be stable in the face of parameter variation.  
 To show the effectiveness of the designed controller, comparison of 
nominal LQ regulator and proposed controller without uncertainty is 
shown in Fig. 3. These figures show the nonconservatism of this proposed 
design method.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. Robust Performance of fixed uncertainty (Step response) 
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Fig. 2. Robust Performance of time-varying uncertainty (Step response) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Nominal Performance (Step response) 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

V. CONCLUSIONS  
 This paper has proposed a new design method of Robust LQ 
regulator based on the descriptor form of structured time-varying 
uncertain systems to avoid the inversion of inertia matrix, and this method 
has been applied to the vibration control of single-link flexible 
manipulator. The resulting performance of the control system is 
satisfactory.    
 A quadratic stability criterion, which is based on polytopic approach and 
scaled small gain technique, is presented. this design problem can be 
formulated as a convex programming problem and gives, in general, less 
conservative results than those obtained using only the scaled small gain 
technique. Moreover, it’s more practical than that using only polytopic 
approach.     
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